Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand

Presentation at GTC 2014

by

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
Current and Next Generation HPC Systems and Applications

- Growth of High Performance Computing (HPC)
 - Growth in processor performance
 - Chip density doubles every 18 months
 - Growth in commodity networking
 - Increase in speed/features + reducing cost
 - Growth in accelerators (NVIDIA GPUs)
Outline

• Communication on InfiniBand Clusters with GPUs

• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
 • Two-sided Communication
 • One-sided Communication
 • MPI Datatype Processing
 • More Optimizations

• MPI and OpenACC

• On going work
MVAPICH2-GPU: CUDA-Aware MPI

• Before CUDA 4: Additional copies
 – Low performance and low productivity

• After CUDA 4: Host-based pipeline
 – Unified Virtual Address
 – Pipeline CUDA copies with IB transfers
 – High performance and high productivity

• After CUDA 5.5: GPUDirect-RDMA support
 – GPU to GPU direct transfer
 – Bypass the host memory
 – Hybrid design to avoid PCI bottlenecks
Data Movement on GPU Clusters

• Connected as PCIe devices – Flexibility but Complexity

1. Intra-GPU
2. Intra-Socket GPU-GPU
3. Inter-Socket GPU-GPU
4. Inter-Node GPU-GPU
5. Intra-Socket GPU-Host
6. Inter-Socket GPU-Host
7. Inter-Node GPU-Host

8. Inter-Node GPU-GPU with IB adapter on remote socket and more . . .

• For each path different schemes: Shared_mem, IPC, GDR, pipeline
• Critical for runtimes to optimize data movement while hiding the complexity
MVAPICH2/MVAPICH2-X Software

- High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP and RDMA over Converged Enhanced Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2012
 - **Support for NVIDIA GPUs, Available since 2011**
 - Used by more than 2,150 organizations (HPC Centers, Industry and Universities) in 72 countries
 - More than 205,000 downloads from OSU site directly
 - Empowering many TOP500 clusters
 - 7th ranked 204,900-core cluster (Stampede) at TACC
 - 14th ranked 125,980-core cluster (Pleiades) at NASA
 - 17th ranked 73,278-core cluster (Tsubame 2.0) at Tokyo Institute of Technology
 - 75th ranked 16,896-core cluster (Keenland) at GaTech and many others . . .
 - Available with software stacks of many IB, HSE and server vendors including Linux Distros (RedHat and SuSE)
 - http://mvapich.cse.ohio-state.edu
Outline

- Communication on InfiniBand Clusters with GPUs
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
 - Two-sided Communication
 - One-sided Communication
 - MPI Datatype Processing
 - More Optimizations
- MPI and OpenACC
- On going work
GPUDirect RDMA (GDR) with CUDA

- Hybrid design using GPUDirect RDMA
 - GPUDirect RDMA and Host-based pipelining
 - Alleviates P2P bandwidth bottlenecks on SandyBridge and IvyBridge
- Support for communication using multi-rail
- Support for Mellanox Connect-IB and ConnectX VPI adapters
- Support for RoCE with Mellanox ConnectX VPI adapters

S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy and D. K. Panda, Efficient Inter-node MPI Communication using GPUDirect RDMA for InfiniBand Clusters with NVIDIA GPUs, Int'l Conference on Parallel Processing (ICPP '13)
Performance of MVAPICH2 with GPUDirect-RDMA: Latency

GPU-GPU Internode MPI Latency

Based on MVAPICH2-2.0b
Intel Ivy Bridge (E5-2680 v2) node with 20 cores
NVIDIA Tesla K40c GPU, Mellanox Connect-IB Dual-FDR HCA
CUDA 5.5, Mellanox OFED 2.0 with GPUDirect-RDMA Patch
Performance of MVAPICH2 with GPUDirect-RDMA: Bandwidth

GPU-GPU Internode MPI Uni-Directional Bandwidth

Small Message Bandwidth
- 1-Rail
- 2-Rail
- 1-Rail-GDR
- 2-Rail-GDR

Large Message Bandwidth
- 1-Rail
- 2-Rail
- 1-Rail-GDR
- 2-Rail-GDR

Based on MVAPICH2-2.0b
- Intel Ivy Bridge (E5-2680 v2) node with 20 cores
- NVIDIA Tesla K40c GPU, Mellanox Connect-IB Dual-FDR HCA
- CUDA 5.5, Mellanox OFED 2.0 with GPUDirect-RDMA Patch

9.8 GB/s
Performance of MVAPICH2 with GPUDirect-RDMA: Bi-Bandwidth

GPU-GPU Internode MPI Bi-directional Bandwidth

Small Message Bi-Bandwidth

- 1-Rail
- 2-Rail
- 1-Rail-GDR
- 2-Rail-GDR

Large Message Bi-Bandwidth

- 1-Rail
- 2-Rail
- 1-Rail-GDR
- 2-Rail-GDR

Based on MVAPICH2-2.0b
Intel Ivy Bridge (E5-2680 v2) node with 20 cores
NVIDIA Tesla K40c GPU, Mellanox Connect-IB Dual-FDR HCA
CUDA 5.5, Mellanox OFED 2.0 with GPUDirect-RDMA Patch
Applications-level Benefits: AWP-ODC with MVAPICH2-GPU

Platform A: Intel Sandy Bridge + NVIDIA Tesla K20 + Mellanox ConnectX-3
Platform B: Intel Ivy Bridge + NVIDIA Tesla K40 + Mellanox Connect-IB

- A widely-used seismic modeling application, Gordon Bell Finalist at SC 2010
- An initial version using MPI + CUDA for GPU clusters
- Takes advantage of CUDA-aware MPI, two nodes, 1 GPU/Node and 64x32x32 problem
- GPUDirect-RDMA delivers better performance with newer architecture

Based on MVAPICH2-2.0b, CUDA 5.5, Mellanox OFED 2.0 with GPUDirect-RDMA Patch
Two nodes, one GPU/node, one Process/GPU
Continuous Enhancements for Improved Point-to-point Performance

GPU-GPU Internode MPI Latency

- Reduced synchronization and while avoiding expensive copies

![Graph showing small message latency vs message size](image)

Graph Details
- MV2-2.0b-GDR
- Improved

Message Size (Bytes)
- 1, 4, 16, 64, 256, 1K, 4K, 16K

Latency (us)
- 0, 2, 4, 6, 8, 10, 12, 14

- **Based on MVAPich2-2.0b + enhancements**
- Intel Ivy Bridge (E5-2630 v2) node with 12 cores
- NVIDIA Tesla K40c GPU, Mellanox Connect-IB Dual-FDR HCA
- CUDA 5.5, Mellanox OFED 2.0 with GPUDirect-RDMA Patch

Graph Analysis
- MV2-2.0b-GDR shows higher latency compared to the Improved version.
- The Improved version has a reduction of 31% in latency compared to MV2-2.0b-GDR for certain message sizes.
Dynamic Tuning for Point-to-point Performance

GPU-GPU Internode MPI Performance

Latency
- Opt_latency
- Opt_bw
- Opt_dynamic

Bandwidth
- Opt_latency
- Opt_bw
- Opt_dynamic

Based on MVAPICH2-2.0b + enhancements
Intel Ivy Bridge (E5-2630 v2) node with 12 cores
NVIDIA Tesla K40c GPU, Mellanox Connect-IB Dual-FDR HCA
CUDA 5.5, Mellanox OFED 2.0 with GPUDirect-RDMA Patch
Outline

- Communication on InfiniBand Clusters with GPUs
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
 - Two-sided Communication
 - One-sided Communication
 - MPI Datatype Processing
 - More Optimizations
- MPI and OpenACC
- Conclusion
One-sided communication

- Send/Recv semantics incur overheads
 - Distributed buffer information
 - Message matching
 - Additional copies or rendezvous exchange

<table>
<thead>
<tr>
<th>4 bytes</th>
<th>Host-Host</th>
<th>GPU-GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB send/recv</td>
<td>0.98</td>
<td>1.84</td>
</tr>
<tr>
<td>MPI send/recv</td>
<td>1.25</td>
<td>6.95</td>
</tr>
</tbody>
</table>

Table: Latency (half round trip) on SandyBridge nodes with FDR connect-IB

- One-sided communication
 - Separates synchronization from communication
 - Direct mapping over RDMA semantics
 - Lower overheads and better overlap
MPI-3 RMA Support with GPUDirect RDMA

MPI-3 RMA provides flexible synchronization and completion primitives

Small Message Latency

- **Send-Recv**
- **Put+ActiveSync**
- **Put+Flush**

Small Message Rate

- **Send-Recv**
- **Put+ActiveSync**

Based on MVAPICH2-2.0b + Extensions
Intel Sandy Bridge (E5-2670) node with 16 cores
NVIDIA Tesla K40c GPU, Mellanox Connect-IB Dual-FDR HCA
CUDA 5.5, Mellanox OFED 2.1 with GPUDirect-RDMA Plugin
Communication Kernel Evaluation: 3DStencil and Alltoall

Based on MVAPICH2-2.0b + Extensions
Intel Sandy Bridge (E5-2670) node with 16 cores
NVIDIA Tesla K40c GPU, Mellanox Connect-IB Dual-FDR HCA
CUDA 5.5, Mellanox OFED 2.1 with GPUDirect-RDMA Plugin
Outline

- Communication on InfiniBand Clusters with GPUs
- **MVAPICH2-GPU with GPUDirect-RDMA (GDR)**
 - Two-sided Communication
 - One-sided Communication
 - MPI Datatype Processing
 - More Optimizations
- **MPI and OpenACC**
- Conclusion
Non-contiguous Data Exchange

Halo data exchange

• Multi-dimensional data
 – Row based organization
 – Contiguous on one dimension
 – Non-contiguous on other dimensions

• Halo data exchange
 – Duplicate the boundary
 – Exchange the boundary in each iteration
MPI Datatype Processing

• Comprehensive support
 • targeted kernels for regular datatypes - vector, subarray, indexed_block
 • generic kernels for all other irregular datatypes

• Separate non-blocking stream for kernels launched by MPI library
 • Avoids stream conflicts with application kernels

• Flexible set of parameters for users to tune kernels
 • Vector
 • MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE
 • MV2_CUDA_KERNEL_VECTOR_YSIZE

 • Subarray
 • MV2_CUDA_KERNEL_SUBARR_TIDBLK_SIZE
 • MV2_CUDA_KERNEL_SUBARR_XDIM
 • MV2_CUDA_KERNEL_SUBARR_YDIM
 • MV2_CUDA_KERNEL_SUBARR_ZDIM

 • Indexed_block
 • MV2_CUDA_KERNEL_IDXBLK_XDIM
Application-Level Evaluation (LBMGPU-3D)

- LBM-CUDA (Courtesy: Carlos Rosale, TACC)
 - Lattice Boltzmann Method for multiphase flows with large density ratios
 - 3D LBM-CUDA: one process/GPU per node, 512x512x512 data grid, up to 64 nodes

- Oakley cluster at OSC: two hex-core Intel Westmere processors, two NVIDIA Tesla M2070, one Mellanox IB QDR MT26428 adapter and 48 GB of main memory
Outline

• Communication on InfiniBand Clusters with GPUs

• MVAPICH2-GPU with GpuDirect-RDMA (GDR)
 • Two-sided Communication
 • One-sided Communication
 • MPI Datatype Processing
 • More Optimizations

• MPI and OpenACC

• Conclusion
More Optimizations!!!

• Topology-detection:
 • Avoid the inter-sockets QPI bottlenecks
 • Dynamic threshold selection between GDR and host-based transfers

• All these and other features will be available with the next release of MVAPICH2-GDR => coming very soon
Outline

• Communication on InfiniBand Clusters with GPUs
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
 • Two-sided Communication
 • One-sided Communication
 • MPI Datatype Processing
 • More Optimizations

• MPI and OpenACC

• Conclusion
OpenACC

- OpenACC is gaining popularity
- Several sessions during GTC
- A set of compiler directives (#pragma)
- Offload specific loops or parallelizable sections in code onto accelerators

```c
#pragma acc region
{
    for(i = 0; i < size; i++) {
        A[i] = B[i] + C[i];
    }
}
```

- Routines to allocate/free memory on accelerators

```c
buffer = acc_malloc(MYBUFSIZE);
acc_free(buffer);
```

- Supported for C, C++ and Fortran
- Huge list of modifiers – `copy, copyout, private, independent, etc..`
Using MVPICH2 with the new OpenACC 2.0

- `acc_deviceptr` to get device pointer (in OpenACC 2.0)
 - Enables MPI communication from memory allocated by compiler when it is available in OpenACC 2.0 implementations
 - MVAPICH2 will detect the device pointer and optimize communication
 - Delivers the same performance as with CUDA

```c
A = malloc(sizeof(int) * N);

......

#pragma acc data copyin(A)
{

#pragma acc parallel for
//compute for loop

MPI_Send(acc_deviceptr(A), N, MPI_INT, 0, 1, MPI_COMM_WORLD);

}

......

free(A);
```
How can I get Started with GDR Experimentation?

• MVAPICH2-2.0b with GDR support can be downloaded from https://mvapich.cse.ohio-state.edu/download/mvapich2gdr/

• System software requirements
 – Mellanox OFED 2.1
 – NVIDIA Driver 331.20 or later
 – NVIDIA CUDA Toolkit 5.5
 – Plugin for GPUDirect RDMA

• Has optimized designs for point-to-point communication using GDR

• Work under progress for optimizing collective and one-sided communication

• Contact MVAPICH help list with any questions related to the package mvapich-help@cse.ohio-state.edu

• MVAPICH2-GDR-RC1 with additional optimizations coming soon!!
Conclusions

• MVAPICH2 optimizes MPI communication on InfiniBand clusters with GPUs

• Provides optimized designs for point-to-point two-sided and one-sided communication, and datatype processing

• Takes advantage of CUDA features like IPC and GPUDirect RDMA

• Delivers
 – High performance
 – High productivity

With support for latest NVIDIA GPUs and InfiniBand Adapters
Acknowledgments

Dr. Davide Rossetti and others @NVIDIA
Talk on Hybrid HPL for Heterogeneous Clusters

Want to improve the top500 ranking of your heterogeneous GPU Cluster?

Yes !!

Do not miss our next talk –

S4535 - Accelerating HPL on Heterogeneous Clusters with NVIDIA GPUs

Tuesday, 03/25 (today)

Room LL21A

17:00 – 17:25
Thank You!

panda@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/