A High-Speed 2-Opt TSP Solver for Large Problem Sizes

Martin Burtscher
Department of Computer Science

TEXAS STATE UNIVERSITY
The rising STAR of Texas
Overview

- CUDA code optimization case study
 - Uses 2-opt improvement heuristic as example
 - Will study 6 different implementations

- Key findings
 - Radically changing the parallelization approach may result in a much better GPU solution
 - Smart usage of global memory can outperform a solution that runs entirely in shared memory
Travelling Salesman Problem (TSP)

- Important combinatorial optimization problem
 - Wire routing, logistics, robot arm movement, etc.
- Given n cities, find shortest Hamiltonian tour
 - Must visit all cities exactly once and end in first city
- Usually expressed as a graph problem
 - We use complete, undirected, planar, Euclidean graph
 - Vertices represent cities
 - Edge weights reflect distances
2-opt Improvement Heuristic

- Optimal TSP solution is NP-hard
 - Heuristic algorithms used to approximate solution
- We use 2-opt improvement heuristic
 - Generate k random initial tours (city permutations)
 - Iteratively improve tours until local minimum reached
- In each iteration, apply best possible 2-opt move
 - Find best pair of edges $(i, i+1)$ and $(j, j+1)$ such that replacing them with (i, j) and $(i+1, j+1)$ minimizes tour length

A High-Speed 2-Opt TSP Solver for Large Problem Sizes
2-opt Pseudo Code (Time Critical Part)

// city[i] is ith city (permutation array)
#define dist(a,b) dmat[city[a]][city[b]]
do {
 minchange = 0;
 for (i = 0; i < cities-2; i++) {
 for (j = i+2; j < cities; j++) {
 change = dist(i,j) + dist(i+1,j+1)
 - dist(i,i+1) - dist(j,j+1);
 if (minchange > change) {
 minchange = change;
 mini = i; minj = j;
 }
 }
 }
 // apply mini/minj move
} while (minchange < 0);

Distance matrix: \(O(n^2)\) time and space

Doubly-nested for loop to visit \(O(n^2)\) edge pairs

It suffices to compute change in length: \(O(1)\) time

\(O(n)\) iterations needed to reach local minimum: overall algorithm is \(O(n^3)\)
Methodology

- **System**
 - nvcc v5.5 with “-O3 -arch=sm_35 -use_fast_math”
 - K40 GPU with 15 SMs & 2880 PEs (Kepler based)

- **Metric**
 - Throughput in billion moves per second (best of 3 runs)

- **Inputs**
 - First n points of “d18512.tsp” from TSPLIB (plus others)
 - k random initial tours + 2-opt to find local minimum
 - Select k s.t. SMs fully loaded and runtime ≥ 1 second
Distance Matrix in Shared Memory

- Algorithm 1 (published in 2011 by M. O’Neil)
 - Each thread applies 2-opt to a different initial tour
 - Need city arrays to record tour (in local memory)
 - Pre-compute distance matrix and store in shared mem

- Benefit
 - Local memory accesses are cached and coalesced
 - Distance lookup accesses go to shared memory

- Drawbacks
 - Limited by shared memory size of 48 kB
 - Random matrix accesses result in bank conflicts
A High-Speed 2-Opt TSP Solver for Large Problem Sizes

Throughput (Dist Matrix in Shmem)

Shared memory limits input size to 110 cities
Equivalent to ~eight Xeons
Need a more scalable solution

About 26 Gmoves/s
Out of shared mem

Gmoves/s

number of cities

30 43 62 90 129 186 267 385 555 799 1150 1656 2385 3434 4945 7121 10255 14767

matr_s
Distance Matrix in Global Memory

- Algorithm 2 (based on Algorithm 1)
 - Pre-compute distance matrix and store in global mem
 - Still need city arrays to record tour (in local memory)

- Benefit
 - Not limited by shared memory capacity

- Drawback
 - Random matrix accesses result in poor cache performance and uncoalesced accesses
A High-Speed 2-Opt TSP Solver for Large Problem Sizes

Throughput (Dist Matrix in Glob Mem)

Global memory limits input size to ~20000 cities

On par with Xeon chip

Need faster + more scalable solution

Under 3.5 Gmoves/s

12-hour time-out
Re-calculting the Distances

Algorithm 3 (presented at GTC 2012 by K. Rocki)

- Compute distances rather than looking them up
- Copy city coordinates into local memory
- No need for city arrays, permute coords directly

Benefits

- $O(n)$ memory usage, coalesced memory accesses

Drawbacks

- Limited by local memory size (performance degrades)
- Large k needed: $k \geq 30720$ to fully utilize K40 GPU
Throughput (Calculating Distances)

Local memory limits input size to ~4000 cities

Almost 20 Gmoves/s

Need a more scalable solution

12-hour time-out

A High-Speed 2-Opt TSP Solver for Large Problem Sizes
Intra Parallelization of 2-opt Step

- Algorithm 4 (Algo 3 + hierarchical parallelization)
 - Assign tours to thread blocks instead of threads
 - Parallelize 2-opt computation across threads
 - Distribute outer `for` loop across threads in each thread block
 - Requires parallel prefix scans, `__syncthreads()`, etc.

- Benefits
 - Memory usage per block is greatly reduced
 - Latency to find local minimum of a tour is much smaller

- Drawbacks
 - Complexity of implementation, small performance drop
Throughput (Intra-2-opt Parallelization)

A High-Speed 2-Opt TSP Solver for Large Problem Sizes

No practical limit on input size!

Can we boost performance?

Overhead lowers perf

12-hour time-out

A High-Speed 2-Opt TSP Solver for Large Problem Sizes
Intra-2-opt Parallelization with Tiling

- **Algorithm 5 (Algo 4 + tiling in shared memory)**
 - Break up computation into chunks such that each chunk’s working set fits into shared memory
 - Load data into shared memory before each chunk
 - Works beautifully after reversing inner `for` loop

- **Benefits**
 - Most accesses go to shared memory due to reuse
 - No bank conflicts, full coalescing

- **Drawbacks**
 - Complexity of implementation
Throughput (with Tiling)

- Over 56 Gmoves/s
- No bank conflicts
- Poor launch configuration

Can we boost performance?

A High-Speed 2-Opt TSP Solver for Large Problem Sizes
Launch Configuration Optimization

- Algorithm 6 (Algorithm 5 + tuned configuration)
 - Compute optimal thread count per block
 - Based on number of cities, shared memory use, max threads per block, and max blocks per SM (32 registers per thread)
 - Launch kernel with computed thread count per block

- Benefits
 - Maximizes hardware usage

- Drawbacks
 - None (need to write code to evaluate configurations)
Throughput (Tuned Configuration)

- Much better performance
- Reaches 60 Gmoves/s
- 2.3x performance of shmem solution and no limit on input size
Summary and Conclusions

- Fast CUDA implementation of 2-opt TSP solver
 - Over 2x faster than prior solutions, no problem-size limit
 - Interesting optimizations (e.g., compute best launch configuration, reverse loop to enable coalescing & tiling)

- Conclusions
 - Rethinking implementation and parallelization strategy to better exploit GPU hardware may pay off

- CUDA source code is available at http://www.cs.txstate.edu/~burtscher/research/TSP_GPU/
Acknowledgments

- Collaborator
 - Kamil Rocki, IBM
- U.S. National Science Foundation
 - DUE-1141022, CNS-1217231, and CNS-1305359
- NVIDIA Corporation
 - Grants and equipment donations
- Texas Advanced Computing Center
 - K40 GPUs in Maverick system