WYSIWYG Computational Photography via Viewfinder Editing

Jongmin Baek13 Dawid Pają2 Kihwan Kim2 Kari Pulli2 Marc Levoy3

1Dropbox, Inc. 2NVIDIA Research 3Stanford University
Enhance photography via computation

Computational Photography

Deferred computation
This project

- Make computational photography WYSIWYG!

Edit on a “live” viewfinder

feedback for user & application

user input
Desired user experience

Without edit

With edit
1. Viewfinder editing
2. Appearance-based camera control
3. Implementation and results

This talk

Outline
Viewfinder editing

User selects a region

Find all similar regions (in each frame)

User specifies an edit

Apply the edit onto the regions (in each frame)
Overview for region selection

User strokes → Subsequent Viewfinder frames → Patches in each frame → Lookup → High-dimensional data structure → Store → Processing → Compute response
+ Multi-scale texture lookup

Red: patches matched from the finest scale.
Green: patches matched from the medium scale (among those remaining)
Blue: patches matched from the coarsest scale (among those remaining)
+ Spatial filtering

[Gastal and Oliveira, SIGGRAPH 2011]
+ Temporal filtering
In action...
Comparison of methods (ms)

- Ours
- Li et al., 2010
- Bie et al., 2011
- Xu et al., 2009
- Farbman et al., 2010
- Li et al., 2008
- An and Pellacini, 2008
- Chen et al., 2012

Per-frame runtime on multi-core x86 machine
Comparison of methods (ms)

<table>
<thead>
<tr>
<th>Method</th>
<th>Total</th>
<th>Per frame</th>
<th>Precomputation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>30 fps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al., 2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bie et al., 2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu et al., 2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farbman et al., 2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al., 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An and Pellacini, 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen et al., 2012</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chen et al., 2012
An and Pellacini, 2008
Li et al., 2010
Farbman et al., 2010
Li et al., 2008
An and Pellacini, 2008
Chen et al., 2012

0 10 20 30 40 50 60 70 80 90 100
1. Viewfinder editing

2. Appearance-based camera control

3. Implementation and results

This talk
HDR Metering: Status Quo

- Determine the **# of exposures** and **duration of each exposure** based on the **scene content**.

- What if the camera is now WYSIWYG?

- Determine the **# of exposures** and **duration of each exposure** based on the **displayed content**.

 - Take each of short, medium long exposures if and only if necessary.
 - Minimize capture time, leading to less motion blur, handshake, etc.
Evaluation (synthetic)

[Hasinoff et al., CVPR 2010]
135 ms total exposure

[Proposed]
135 ms total exposure
Evaluation (synthetic)

[Hasinoff et al., CVPR 2010] [Proposed]

135ms total exposure
Evaluation (dynamic scene)

[Hasinoff et al., CVPR 2010]
85 ms total exposure

[Proposed]
27 ms total exposure
Evaluation (local edits)

[Without edit]
17 ms total exposure

[With edit]
96 ms total exposure
1. Viewfinder editing

2. Appearance-based camera control

3. Implementation and results

This talk
Platform

- NVIDIA developer tablet

- Tegra 3 SoC
- Cortex-A9 CPU
- ULP GeForce GPU
- 30-fps camera with FCam API
System pipeline

Viewfinder stream
Latest N frames

Registration + Blending

HDR composite

Generate edit maps

Edit masks

Tonemap + Edit

Appearance-based metering
Results (Local tonal edit)

Viewfinder interaction
Results (Local tonal edit)

Viewfinder interaction
Results (focal stack composition)

Viewfinder interaction

Input Reference Output
Summary

• Design and implementation of Viewfinder Editing
 • Algorithmic advances.
 • Reclaim WYSIWYG experience.

• Useful for Computational Photography
 • Better camera control for better image quality

• Possible in today’s mobile devices
 • Harness computes in CPU, GPU
Questions?