Hardware and Software Design for a 1000 FPS Real-Time Soft-Field Tomography System

M. Sc. Patrik Gebhardt
Content

1. What is Soft-Field Tomography?
2. What it Needs to be That Fast?
3. Hardware Design and Data Acquisition
4. GPU Based Image Reconstruction
5. System in Action
6. Conclusion
What is Soft-field Tomography?

Basics

- Method for generating cross-sectional images
- Use of non ionizing radiation, unlike hard-field tomography

- Example: Electrical Impedance Tomography (EIT)
 - Attach surface with electrodes
 - Inject electrical currents
 - Measure corresponding voltages
What is Soft-field Tomography?
EIT-System

Electrodes
Reconstruction
Voltage Measurement
Current Sources
What is Soft-field Tomography?

Use Cases

http://www.draeger.com/
Content

1. What is Soft-Field Tomography?

2. What it Needs to be That Fast?

3. Hardware Design and Data Acquisition

4. GPU Based Image Reconstruction

5. System in Action

6. Conclusion
What it needs to be that fast?
Situation

Reconstruction

1 ms

Transferring

Preprocessing

Measurement
What it needs to be that fast?
Consequences

- Parallel hardware design
- Hardware based preprocessing
- Pipelining
- Reconstruction on GPUs
Content

1. What is Soft-Field Tomography?

2. What it Needs to be That Fast?

3. Hardware Design and Data Acquisition

4. GPU Based Image Reconstruction

5. System in Action

6. Conclusion
Hardware Design and Data Acquisition
Parallelizing Measurement Procedure

TDMA

FDMA
Hardware Design and Data Acquisition
Parallel Hardware Architecture

- 36 gold-plated electrodes
- 9 parallel floating current sources
 - Direct digital synthesis
 - Controlled floating current sources
- 18 parallel measurement channels
 - 18 analog-to-digital converters
 - 3 field programmable gate arrays for fast Fourier transform
- Digital system control unit
 - Ethernet and USB interface
 - Central clock generation and distribution
Hardware Design and Data Acquisition

Preprocessing

- FPGA based FFT calculation
- In parallel with data acquisition
- Synchronized with signal generation
 → no leakage-effect of FFT

- 1024 Samples in 0.5 ms for 2 multiplexing steps
Hardware Design and Data Acquisition

Package generation

- Main-FPGA collects all data
- Only relevant frequency points are transmitted
- Total data transfer rate: 9.89 MBit/s
Hardware Design and Data Acquisition
Complete System
Content

1. What is Soft-Field Tomography?
2. What it Needs to be That Fast?
3. Hardware Design and Data Acquisition
4. GPU Based Image Reconstruction
5. System in Action
6. Conclusion
GPU Based Image Reconstruction

Algorithm

- Underlying PDE, derived from Maxwell's Equations

\[\nabla \cdot (\sigma (\vec{r}) \nabla \Phi (\vec{r})) = 0 \]

- Only solvable with ideal boundary conditions
- Better suited is solving an optimization problem

\[\sigma (V_m) = \arg \min_{\sigma} \| V_m - V_c(\sigma) \|^2 \]

- Algorithm split up into inverse and forward problem
GPU Based Image Reconstruction
Solving Forward Problem

- PDE solved with Finite Element Method

- Domain split up into elements
 - Piecewise constant conductivity
 - Electrical potential interpolated from nodes

- Equation transformed into linear system

\[
\left(S(\sigma) + \left(\frac{n\pi}{z_m} \right)^2 R(\sigma) \right) \vec{V}_n = B\vec{I}_n
\]

\[
S_{i,j}(\sigma) = \sum_{k=1}^{K} \sigma_k \int_{\Omega_k} \nabla u_i \cdot \nabla u_j dV
\]

\[
R_{i,j}(\sigma) = \sum_{k=1}^{K} \sigma_k \int_{\Omega_k} u_i u_j dV
\]
GPU Based Image Reconstruction
Matrix assembly on GPU using Metaprogramming

- FEM model matrices need to be updated often
- Matrices need to be as accurate as possible
- Solution: Analytic integration using Metaprogramming

Matrix assembly algorithm on GPU
GPU Based Image Reconstruction
Matrix assembly on GPU using Metaprogramming

\[R_{i,j}(\sigma) = \sum_{k=1}^{K} \sigma_k \int_{\Omega_k} u_i u_j dV \]

@kernel
def integrateWithBasis(self, points, ci, cj):
 # create coordinates
 x, y = symbols('x, y')

 # basis function
 ui = self.basis_function([x, y], ci)
 uj = self.basis_function([x, y], cj)

 # equation
 equation = ui * uj

 # integrate on triangle
 return integrateOnTriangle(equation, x, y, points)
GPU Based Image Reconstruction
Matrix assembly on GPU using Metaprogramming

```c
mpFlow::dtype::real mpFlow::FEM::basis::Linear::integrateWithBasis(
    const std::shared_ptr<dLinear> &other
)
{
    return (0);
}
```
GPU Based Image Reconstruction
Solving Inverse Problem

- Newton’s method used for solving inverse problem

\[\tilde{\sigma}_{n+1} = \tilde{\sigma}_n + \Delta \tilde{\sigma} \]
\[J(\tilde{\sigma}_n) \Delta \tilde{\sigma} = [V_m - V_c(\tilde{\sigma}_n)] \]

- Very ill-posed
 \(\rightarrow \) Regularization necessary

\[\Delta \tilde{\sigma} = (J^T J + \lambda^2 L^T L)^{-1} J^T \Delta \tilde{V} \]

- Usually, only one step is performed
 \(\rightarrow \) Differential EIT
GPU Based Image Reconstruction
Pipelining for 1000 FPS

- Data set too small for maximum performance
- Solution: Pipelining
 — reconstruction of multiple images simultaneously
- Tradeoff between Latency and FPS

- Values measured on one Tesla K20
GPU Based Image Reconstruction
Visualization in Real-Time

- Streaming reconstructed data to imaging server (i.e. iPad)
- Only subset of images viewable in real-time
Content

1. What is Soft-Field Tomography?
2. What it Needs to be That Fast?
3. Hardware Design and Data Acquisition
4. GPU Based Image Reconstruction
5. System in Action
6. Conclusion
System in Action
Video Presentation
Conclusion

- Soft-field tomography using non-ionizing radiation
- Pipelining and parallel hardware design necessary
- GPU for solving the linear systems
- Metaprogramming for analytical integration
- Pipelining to better utilize GPU resources
Thank You for your being here ;)}