
GPU ACCELERATION OF SPARSE MATRIX
FACTORIZATION IN CHOLMOD

STEVE RENNICH Nvidia

TIM DAVIS University of Florida

PHILIPPE VANDERMERSCH Nvidia

PROBLEM / OBJECTIVE

§  Sparse Direct Solvers can be a challenge to accelerate using
GPUs

§ Tim Davis has been working with NVIDIA to resolve this
—  Describe techniques used

—  Show performance achieved
—  Work in progress

§ Would like to suggest that GPUs can be quite good for
accelerating sparse direct solves

—  Many optimizations remain

SPECIFIC WORK

§ Cholesky factorization
—  Symmetric Positive Definite (SPD) matrices

§ Numerical Factorization
—  Largest component

§ CHOLMOD (part of SuiteSparse)
—  High performance

—  Well known

—  Accessible
—  GPU acceleration since v4.0.0

OUTLINE

§  Supernodal Cholesky Method
—  Left-Looking Sparse Direct Factorization

§ Results
—  CHOLMOD 4.3.0 GPU vs. 4.2.1 GPU vs. 4.3.0 CPU

§ Acceleration Techniques

§  Issues / future work

SPARSE DIRECT SOLVERS

§ Many flavors
—  Supernodal / Multi-frontal

—  Left / right looking

§  Supernodes
—  collections of similar columns

—  provide opportunity for dense matrix math
—  grow with mesh size due to ‘fill’

—  The larger the model, the larger the supernodes

§  Supernodes for solids grow faster than supernodes for shells

DENSE BLOCK CHOLESKY
§  Basis for sparse direct algorithms

—  Emphasizes dense math
—  Dominated by computation of Schur complement

A11

A21 A22

At
21

L21 I

0 I

0
A22 – L21 Lt

21

0 Lt
11

0 I

Lt
21

= X X

GEMM

POTRF – element-wise Cholesky factorization

TRSM – triangular solve

Schur
complement

L11 Lt
11 = A11

L11 Lt

21 = At
21

A*

22 = A22 – L21 Lt
21

 POTRF

 TRSM

 GEMM

SUPERNODAL SPARSE CHOLESKY
§  ‘Left looking’ proceeds left to right by supernodes

initial assemble POTRF TRSM

Assemble Schur complement from supernode 1 (SYRK / GEMM)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

SYRK
GEMM

SUPERNODAL SPARSE CHOLESKY
§  ‘Left looking’ proceeds left to right by supernodes

initial assemble POTRF TRSM

Assemble Schur complement from supernode 3 (SYRK / GEMM)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

SYRK
GEMM

SUPERNODAL SPARSE CHOLESKY
§  ‘Left looking’ proceeds left to right by supernodes

initial assemble POTRF TRSM

1

2

3

4

5

1

2

3

4

5

1

2

3

4

1

2

3

4

55

POTRF TRSM POTRF

ELIMINATION TREE

§ DAG : determines order in which
supernodes can be factored

§ Descendant supernodes
referenced
multiple times

supernode

SIMPLE ACCELERATION APPROACH
§  Large dense math to GPU

—  SYRK, GEMM, TRSM
—  Serial

§ Constrained by
—  Serial processing
—  Small supernodes
—  Strong dependence on

PCIe bandwidth
—  No hybrid processing
—  Host memory bandwidth

CPU CPU

H2D

KERNEL

D2H

time

appropriate BLAS call

RESULTS - TEST MATRICES

Matrix	 rows/cols	 nnz	 A	 nnz/row	 nnz	 L	 fill	 ra3o	
nd24k 72,000 14,393,817 199.91 5.12E+08 35.54
Fault_639 638,802 14,626,683 22.90 3.27E+09 223.77
Emilia_923 923,136 20,964,171 22.71 5.60E+09 267.28
boneS10 914,898 28,191,660 30.81 3.69E+08 13.08
inline_1 503,712 18,660,027 37.05 2.21E+08 11.82
ldoor 952,203 23,737,339 24.93 1.53E+08 6.46
bone010 986,703 36,326,514 36.82 2.26E+09 62.10
Hook_1498 1,498,023 31,207,734 20.83 3.12E+09 99.92
Geo_1438 1,437,960 32,297,325 22.46 6.68E+09 206.89
Serena 1,391,349 32,961,525 23.69 7.94E+09 240.89
audikw_1 943,695 39,297,771 41.64 2.33E+09 59.20
Flan_1565 1,564,794 59,485,419 38.01 3.60E+09 60.45

http://www.cise.ufl.edu/research/sparse/matrices/

100 SPD matrices from Florida Sparse Matrix Collection

RESULTS – SYSTEM USED

§ CHOLMOD (SuiteSparse version 4.3.0)
—  Metis 4.0

§ Dual-socket Ivy-Bridge Xeon @ 3.0 Ghz
—  20 cores total, PCIe gen3, E5-2690 v2

§ Tesla K40
—  boost clocks (3004, 875), ECC=OFF, Using 3GB of GPU memory

§  Intel Composer XE 2013
—  compiler & MKL

RESULTS - SINGLE K40

2.4x

0

100

200

300

400

500

600

700

800

G
Fl

op
s/

s

Florida Sparse Matrix Collection

4.3.0 CPU only

4.2.1 CPU+GPU

4.3.0 CPU+GPU

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90 100

CP
U

 s
ec

.
/

G
PU

 s
ec

.

Matrix #

GPU vs. CPU Speedup

RESULTS - SPEEDUP VS. CPU

< 0.28 sec

< 1.5 M nnz

RESULTS – PCIE DEPENDENCE

0

100

200

300

400

500

600

700

800
G

fl
op

s/
s

Florida Sparse Matrix Collection

gen3

gen2

gen1

PCIe

gen2 = 92% gen3
gen1 = 75% gen3

6 core SB i7 @ 3.2 GHz + K40

§  nvvp
§  Second-to-last supernode

CHOLMOD-4.2.1 WITH K40

assembly SYRK/DGEMM POTRF TRSM

H2D
D2H

COMPUTE

OPTIMIZATION TECHNIQUES

§ Reorder Descendants
—  Hide PCIe communication behind computation

§ Assemble supernodes on GPU
—  Reduce PCIe & host memory traffic

§ Hybrid computing
—  Achieved using fixed GPU and host pinned buffers

§ Block factorization of diagonal blocks and lower panel

REORDERING DESCENDANTS
§  For each supernode

—  Descendant supernodes are ‘scored’ by their area (ncol*nrow)

§  Supernodes are sorted by score to maximize kernel/memcpy overlap

supernode
score

GPU
CPU

supernodes

decreasing cost to assemble

row/column
threshold

ndrow >= 256
ndcol >= 32

ASSEMBLE SUPERNODES ON GPU
§  Large descendants assembled on GPU

—  2 streams / double buffered

§  Small descendants assembled on CPU
—  hybrid computing

§  Assembled supernode is sum of the CPU
and GPU components

supernode
being

assembled

assembled on
GPU

assembled on CPU A*
 = A – ∑small L21 Lt

21 – ∑large L21 Lt
21

SUPERNODE BUFFERS

§  Single allocation of CPU & GPU memory
—  supports all GPU computing

—  High perf. / asynchronous PCIe requires pinned host memory
—  Allocating pinned host memory is slow (~1.4 sec. for 4 GB)

! This time is not included in benchmarks presented here !

§ All buffers are reused
—  Independent of matrix being factored

§  Symbolic Factorization
—  LIMIT supernode size such that they all fit in the pre-defined

buffers

SUPERNODE BUFFERS

§  6 Device Buffers (0.5 GB each)
—  2 to hold incoming descendant supernodes: L21

—  1 to hold Schur complement update: C = L21 Lt
21

—  2 to hold partial assemblies (1 from CPU): A -= C
—  1 for everything else: scatter maps

§  8 Host buffers (0.5 GB each)
—  Hold descendant supernodes ready for async transfer to GPU

—  CPU fills buffers and issues/queues GPU operations

§  While a host buffer is available
—  copy largest remaining descendant and queue factorization commands on GPU

§  CPU assembles 3 smallest remaining descendants

SUPERNODE BUFFERS

L4 L3 C AL AS

L5 L6 L7 L8 L9 L10 L11 L12 AS

pinned host buffers regular
host mem

GPU buffers

H2D

H2D

A = AS - AL

w
or

k

BLOCKED POTRF AND TRSM
§ POTRF – element Cholesky

D2H

H2D

H2D

H2D

H2D

§ TRSM – triangular solve

POTRF
on host
TRSM on

GPU

GEMM,
TRSM,

SYRK on
GPU

TRSM,
SYRK on

GPU

GEMM,
TRSM,

SYRK on
GPU

POTRF
on host
TRSM on

GPU

POTRF
on host
TRSM on

GPU

ONLY 3 CUSTOM KERNELS

§ Create map
—  Map rows of current supernode

§ Create relative map
—  Map rows of current descendant to current supernode

§  Scatter update
—  Use maps to scatter descendants contribution to the partial assembly

§ Very simple, very fast

CHOLMOD 4.2.1 VS. 4.3.0
assembly SYRK/DGEMM POTRF TRSM

CHOLMOD 4.2.1
536 ms

CHOLMOD 4.3.0
235 ms

assembly
SYRK/DGEMM

POT
RF

TRSM

reduced

H2D

D2H

COMPUTE

H2D

D2H

COMPUTE

D2D

CHOLMOD V4.3.0

assembly SYRK/DGEMM POTRF

TRSM

USING GPU ACCELERATION IN CHOLMOD
§ Programmatically

!cholmod_start (Common);  
 

!Common->useGPU = 1;  
 

!Common->maxGpuMemBytes = 3000000000;  
!

 1 = Use GPU

 0 = Don’t use GPU

 -1 = query environment (default)

§  Environmentally

>export CHOLMOD_USE_GPU = 1!

>export CHOLMOD_GPU_MEM_BYTES = 3000000000!

FUTURE – LEVERAGE MULTI-GPU

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

N
um

er
ic

al
 F

ac
t.

 G
Fl

op
s/

s

Florida Sparse Matrix Collection Matrix

Multi-GPU factorization Perf.

CPU GF

GPU GF

2x GPU

4x GPU

thanks to Wajih Boukaram, KAUST

GPU0 GPU1

CPU
K40
2xK40
4xK40

SHELL MODEL PERFORMANCE

0

100

200

300

400

0 2 4 6 8 10 12

N
um

er
ic

al
 F

ac
t.

 G
Fl

op
s/

s

Million dof

Printed Circuit Board model

GPU

CPU

PCB model courtesy of Dr. Serban Georgescu, Fujitsu Laboratories of Europe Ltd

2 socket x 6 core SB
@ 2.9 Ghz.

w/ 256 GB + 1xK40

FUTURE – ‘BRANCHES ON GPU’
§  Move branches of the elimination tree to the GPU

—  Requires POTRF on GPU

—  Eliminates substantial PCIe overhead

—  Accelerates small supernodes

matrix data for
these nodes is

transferred to GPU
and entire factor is
computed on GPU

THANK YOU

§ Try it out!
—  Download SuiteSparse 4.3.0 w/ CHOLMOD 3.0.0

—  See exactly what was done and how it performs

http://www.cise.ufl.edu/research/sparse/SuiteSparse/

