
GPU ACCELERATION OF SPARSE MATRIX 
FACTORIZATION IN CHOLMOD 

 
STEVE RENNICH    Nvidia 

TIM DAVIS     University of Florida 

PHILIPPE VANDERMERSCH  Nvidia 



PROBLEM / OBJECTIVE 

§  Sparse Direct Solvers can be a challenge to accelerate using 
GPUs 

§ Tim Davis has been working with NVIDIA to resolve this 
—  Describe techniques used 

—  Show performance achieved 
—  Work in progress 

§ Would like to suggest that GPUs can be quite good for 
accelerating sparse direct solves 

—  Many optimizations remain 



SPECIFIC WORK 

§ Cholesky factorization 
—  Symmetric Positive Definite (SPD) matrices 

§ Numerical Factorization 
—  Largest component 

§ CHOLMOD (part of SuiteSparse) 
—  High performance 

—  Well known 

—  Accessible 
—  GPU acceleration since v4.0.0 



OUTLINE 

§  Supernodal Cholesky Method 
—  Left-Looking Sparse Direct Factorization 

 

§ Results 
—  CHOLMOD 4.3.0 GPU vs. 4.2.1 GPU vs. 4.3.0 CPU 
 

§ Acceleration Techniques 
 

§  Issues / future work 



SPARSE DIRECT SOLVERS 

§ Many flavors 
—  Supernodal / Multi-frontal 

—  Left / right looking 
 

§  Supernodes 
—  collections of similar columns 

—  provide opportunity for dense matrix math 
—  grow with mesh size due to ‘fill’ 

—  The larger the model, the larger the supernodes 
 

§  Supernodes for solids grow faster than supernodes for shells 
 



DENSE BLOCK CHOLESKY 
§  Basis for sparse direct algorithms 

—  Emphasizes dense math 
—  Dominated by computation of Schur complement 
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SUPERNODAL SPARSE CHOLESKY 
§  ‘Left looking’ proceeds left to right by supernodes 

 

initial assemble POTRF TRSM 

Assemble Schur complement from supernode 1  ( SYRK / GEMM ) 
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SUPERNODAL SPARSE CHOLESKY 
§  ‘Left looking’ proceeds left to right by supernodes 

initial assemble POTRF TRSM 

Assemble Schur complement from supernode 3 ( SYRK / GEMM ) 
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SUPERNODAL SPARSE CHOLESKY 
§  ‘Left looking’ proceeds left to right by supernodes 

initial assemble POTRF TRSM 
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ELIMINATION TREE 

§ DAG : determines order in which  
supernodes can be factored 
 

§ Descendant supernodes 
referenced 
multiple times 

supernode 



SIMPLE  ACCELERATION  APPROACH 
§  Large dense math to GPU  

—  SYRK, GEMM, TRSM 
—  Serial 

 

§ Constrained by 
—  Serial processing 
—  Small supernodes 
—  Strong dependence on 

PCIe bandwidth 
—  No hybrid processing 
—  Host memory bandwidth 

CPU CPU 

H2D 

KERNEL 

D2H 

time 

appropriate BLAS call 



RESULTS - TEST MATRICES 

Matrix	   rows/cols	   nnz	  A	   nnz/row	   nnz	  L	   fill	  ra3o	  
nd24k 72,000 14,393,817 199.91 5.12E+08 35.54 
Fault_639 638,802 14,626,683 22.90 3.27E+09 223.77 
Emilia_923 923,136 20,964,171 22.71 5.60E+09 267.28 
boneS10 914,898 28,191,660 30.81 3.69E+08 13.08 
inline_1 503,712 18,660,027 37.05 2.21E+08 11.82 
ldoor 952,203 23,737,339 24.93 1.53E+08 6.46 
bone010 986,703 36,326,514 36.82 2.26E+09 62.10 
Hook_1498 1,498,023 31,207,734 20.83 3.12E+09 99.92 
Geo_1438 1,437,960 32,297,325 22.46 6.68E+09 206.89 
Serena 1,391,349 32,961,525 23.69 7.94E+09 240.89 
audikw_1 943,695 39,297,771 41.64 2.33E+09 59.20 
Flan_1565 1,564,794 59,485,419 38.01 3.60E+09 60.45 

http://www.cise.ufl.edu/research/sparse/matrices/ 

100 SPD matrices from Florida Sparse Matrix Collection 



RESULTS – SYSTEM USED 

§ CHOLMOD (SuiteSparse version 4.3.0) 
—   Metis 4.0 

§ Dual-socket Ivy-Bridge Xeon @ 3.0 Ghz 
—  20 cores total, PCIe gen3, E5-2690 v2 

§ Tesla K40 
—  boost clocks (3004, 875), ECC=OFF, Using 3GB of GPU memory 

§  Intel Composer XE 2013 
—  compiler & MKL 

 



RESULTS - SINGLE K40 
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RESULTS - SPEEDUP VS. CPU 

< 0.28 sec 

< 1.5 M nnz 



RESULTS – PCIE DEPENDENCE 
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§  nvvp 
§  Second-to-last supernode 

CHOLMOD-4.2.1 WITH K40 

assembly SYRK/DGEMM POTRF TRSM 

H2D 
D2H 

COMPUTE 



OPTIMIZATION TECHNIQUES 

§ Reorder Descendants 
—  Hide PCIe communication behind computation 

§ Assemble supernodes on GPU 
—  Reduce PCIe & host memory traffic 

§ Hybrid computing 
—  Achieved using fixed GPU and host pinned buffers 

§ Block factorization of diagonal blocks and lower panel 



REORDERING DESCENDANTS 
§  For each supernode 

—  Descendant supernodes are ‘scored’ by their area (ncol*nrow) 

§  Supernodes are sorted by score to maximize kernel/memcpy overlap 

 

supernode 
score 

GPU 
CPU 

supernodes 

decreasing cost to assemble 

row/column 
threshold 

ndrow >= 256 
ndcol >= 32 



ASSEMBLE SUPERNODES ON GPU 
§  Large descendants assembled on GPU 

—  2 streams / double buffered 

§  Small descendants assembled on CPU 
—  hybrid computing 

§  Assembled supernode is sum of the CPU 
and GPU components 

supernode 
being 

assembled 

assembled on 
GPU 

assembled on CPU A*
 =  A – ∑small L21 Lt

21 – ∑large L21 Lt
21   

 



SUPERNODE BUFFERS 

§  Single allocation of CPU & GPU memory 
—  supports all GPU computing 

—  High perf. / asynchronous PCIe requires pinned host memory 
—  Allocating pinned host memory is slow (~1.4 sec. for 4 GB) 

! This time is not included in benchmarks presented here ! 
 

§ All buffers are reused 
—  Independent of matrix being factored 

 

§  Symbolic Factorization 
—  LIMIT supernode size such that they all fit in the pre-defined 

buffers 



SUPERNODE BUFFERS 

§  6 Device Buffers (0.5 GB each) 
—  2 to hold incoming descendant supernodes:  L21 

—  1 to hold Schur complement update:    C = L21 Lt
21  

—  2 to hold partial assemblies (1 from CPU):  A -= C 
—  1 for everything else:       scatter maps     

§  8 Host buffers (0.5 GB each) 
—  Hold descendant supernodes ready for async transfer to GPU 

—  CPU fills buffers and issues/queues GPU operations 



§  While a host buffer is available 
—  copy largest remaining descendant and queue factorization commands on GPU 

§  CPU assembles 3 smallest remaining descendants 

 

SUPERNODE BUFFERS 

L4 L3 C AL AS 

L5 L6 L7 L8 L9 L10 L11 L12 AS 

pinned host buffers regular 
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BLOCKED POTRF AND TRSM 
§ POTRF – element Cholesky 
 

 

D2H 

H2D 

H2D 

H2D 

H2D 

§ TRSM – triangular solve 
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GPU 
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ONLY 3 CUSTOM KERNELS 

§ Create map 
—  Map rows of current supernode 

 

§ Create relative map 
—  Map rows of current descendant to current supernode 

§  Scatter update 
—  Use maps to scatter descendants contribution to the partial assembly 

§ Very simple, very fast 



CHOLMOD 4.2.1 VS. 4.3.0 
assembly SYRK/DGEMM POTRF TRSM 

CHOLMOD 4.2.1 
536 ms 

CHOLMOD 4.3.0 
235 ms 
 

assembly 
SYRK/DGEMM 

POT
RF 

TRSM 

reduced 

H2D 

D2H 

COMPUTE 

H2D 

D2H 

COMPUTE 

D2D 



CHOLMOD V4.3.0 

assembly SYRK/DGEMM POTRF 

TRSM 



USING GPU ACCELERATION IN CHOLMOD 
§ Programmatically 

  

!cholmod_start ( Common );  
 

!Common->useGPU = 1;  
 

!Common->maxGpuMemBytes = 3000000000;  
!

    1  = Use GPU 

    0  = Don’t use GPU 

  -1  = query environment (default) 
 

§  Environmentally 

>export CHOLMOD_USE_GPU = 1!

>export CHOLMOD_GPU_MEM_BYTES = 3000000000!

 



FUTURE – LEVERAGE MULTI-GPU 
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SHELL MODEL PERFORMANCE 
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FUTURE – ‘BRANCHES ON GPU’ 
§  Move branches of the elimination tree to the GPU 

—  Requires POTRF on GPU 

—  Eliminates substantial PCIe overhead 

—  Accelerates small supernodes 

matrix data for 
these nodes is 

transferred to GPU 
and entire factor is 
computed on GPU 



THANK YOU 

§ Try it out! 
—  Download SuiteSparse 4.3.0 w/ CHOLMOD 3.0.0 

—  See exactly what was done and how it performs 

 
http://www.cise.ufl.edu/research/sparse/SuiteSparse/  
 


