Fast evaluation of the inverse Poisson CDF

Mike Giles

University of Oxford
Mathematical Institute
Oxford e-Research Centre

GPU Technology Conference 2014

March 26, 2014
Outline

- problem specification
- incomplete Gamma function
- CPUs versus GPUs
- inverse approximation based on Temme expansion
- Temme asymptotic evaluation
- complete algorithm
- results
Poisson CDF and inverse

A discrete Poisson random variable N with rate λ takes integer value n with probability

$$e^{-\lambda} \frac{\lambda^n}{n!}$$

Hence, the cumulative distribution function is

$$\overline{C}(n) \equiv P(N \leq n) = e^{-\lambda} \sum_{m=0}^{n} \frac{\lambda^m}{m!}.$$

To generate N, can take a uniform $(0, 1)$ random variable U and then compute $N = \overline{C}^{-1}(U)$, where N is the smallest integer such that

$$U \leq \overline{C}(N)$$
Poisson CDF and inverse

Illustration of the inversion process

![Graph showing the inverse CDF of a Poisson distribution. The x-axis represents the range of values, and the y-axis represents the cumulative distribution function values. There is a step function graph with a vertical line indicating the inversion process at a specific value of u.]
Poisson CDF and inverse

When \(\lambda \) is fixed and not too large (\(\lambda < 10^4 \)) can pre-compute \(\overline{C}(n) \) and perform a table lookup.

When \(\lambda \) is variable but small (\(\lambda < 10 \)) can use bottom-up/top-down summation.

When \(\lambda \) is variable and large, then rejection methods can be used to generate Poisson r.v.’s, but the inverse CDF is sometimes helpful:

- stratified sampling
- Latin hypercube
- QMC

This is the problem I am concerned with — approximating \(\overline{C}^{-1}(u) \) at a cost similar to the inverse Normal CDF, or inverse error function.
Poisson CDF and inverse

Illustration of the inversion process through rounding down of some $Q(u) \equiv C^{-1}(u)$ to give $\overline{C}^{-1}(u)$.
Errors in approximating $Q(u)$ can only lead to errors in rounding down if near an integer.
Incomplete Gamma function

If X is a positive random variable with CDF

$$C(x) \equiv \mathbb{P}(X < x) = \frac{1}{\Gamma(x)} \int_{\lambda}^{\infty} e^{-t} t^{x-1} \, dt.$$

then integration by parts gives

$$\mathbb{P}([X] \leq n) = \frac{1}{n!} \int_{\lambda}^{\infty} e^{-t} t^{n} \, dt = e^{-\lambda} \sum_{m=0}^{n} \frac{\lambda^m}{m!}$$

$$\Rightarrow \quad \overline{C}^{-1}(u) = \lfloor C^{-1}(u) \rfloor$$

We will approximate $Q(u) \equiv C^{-1}(u)$ so that $|\tilde{Q}(u) - Q(u)| < \delta \ll 1$

This will round down correctly except when $Q(u)$ is within δ of an integer – then we need to check some $\overline{C}(m)$
CPUs and GPUs

On a CPU, if the costs of $\tilde{Q}(u)$ and $\tilde{C}(m)$ are C_Q and C_C, the average cost is approximately

$$C_Q + 2\delta C_C.$$

However, on a GPU with a warp length of 32, the C_C penalty is incurred if any thread in the warp needs it, so the average cost is

$$C_Q + (1 - (1 - 2\delta)^{32}) C_C \approx C_Q + 64\delta C_C \quad \text{if } \delta \ll 1.$$

This pushes us to more accurate approximations for GPUs.
Temme expansion

Temme (1979) derived a uniformly convergent asymptotic expansion for $C(x)$ of the form

$$C(x) = \Phi \left(\lambda^{\frac{1}{2}} f(r) \right) + \lambda^{-\frac{1}{2}} \phi \left(\lambda^{\frac{1}{2}} f(r) \right) \sum_{n=0}^{\infty} \lambda^{-n} a_n(r)$$

where $r = x/\lambda$ and

$$f(r) \equiv \sqrt{2} \left(1 - r + r \log r \right),$$

with the sign of the square root matching the sign of $r - 1$.
Temme expansion

Based on this, can prove that the quantile function is

\[Q(u) \approx \lambda r + c_0(r) \]

where

\[r = f^{-1}(w/\sqrt{\lambda}), \quad w = \Phi^{-1}(u) \]

and

\[c_0(r) = \frac{\log (f(r) \sqrt{r}/(r-1))}{\log r} \]

Both \(f^{-1}(s) \) and \(c_0(r) \) can be approximated very accurately (over a central range) by polynomials, and an additional *ad hoc* correction gives

\[\tilde{Q}_T(u) = \lambda r + p_2(r) + p_3(r)/\lambda \]
Temme approximation

The function $f(r)$
Temme approximation

Errors in $f^{-1}(s)$ and $c_0(r)$ approximations:
Temme approximation

Maximum error in \tilde{Q}_T approximation:

\[x \times 10^{-5} \]

\[\begin{array}{cccc}
x & 10^1 & 10^2 & 10^3 \\
error & 1.2 & 0.8 & 0.6 \\
\end{array} \]
C(m) evaluation

In double precision, when \(\tilde{Q}(u) \) is too close to an integer \(m+1 \), we need to evaluate \(C(m) \) to choose between \(m \) and \(m+1 \).

When \(\frac{1}{2} \lambda \leq m \leq 2 \lambda \), this can be done very accurately using another approximation due to Temme (1987).

Outside this range, a modified version of bottom-up / top-down summation can be used, because successive terms decrease by factor 2 or more.

In single precision this “correction” procedure does not improve the accuracy.
Temme approximation

Maximum relative error in Temme approximation for $C(m)$
The GPU algorithm (single precision)

given inputs: λ, u

if $\lambda > 4$

$$w := \Phi^{-1}(u)$$

$$s := w/\sqrt{\lambda}$$

if $s_{\text{min}} < s < s_{\text{max}}$ main branch

$$r := p_1(s)$$

$$x := \lambda r + p_2(r) + p_3(r)/\lambda$$

else

$$r := f^{-1}(w/\sqrt{\lambda})$$ Newton iteration

$$x := \lambda r + c_0(r)$$

$$x := x - 0.0218/(x+0.065\lambda)$$

end

$n := \lfloor x \rfloor$
The GPU algorithm (single precision)

```plaintext
if \( x > 10 \)
    return \( n \)
end

end

use bottom-up summation to determine \( n \)

if \( u > 0.5 \) and not accurate enough
    use top-down summation to determine \( n \)
end
```

Top-down summation finds smallest \(n \) such that

\[
1 - u \geq e^{-\lambda} \sum_{m=n+1}^{\infty} \frac{\lambda^m}{m!}
\]
The GPU algorithm (double precision)

given inputs: \(\lambda, u \)

if \(\lambda > 4 \)
 \[w := \Phi^{-1}(u) \]
 \[s := w/\sqrt{\lambda} \]

 if \(s_{\text{min}} < s < s_{\text{max}} \)
 \[r := p_1(s) \]
 \[x := \lambda r + p_2(r) + p_3(r)/\lambda \]
 \[\delta := 2 \times 10^{-5} \]

 else
 \[r := f^{-1}(w/\sqrt{\lambda}) \]
 \[x := \lambda r + c_0(r) \]
 \[x := x - 0.0218/(x+0.065\lambda) \]
 \[\delta := 0.01/\lambda \]

 end

\[n := \lfloor x + \delta \rfloor \]
The GPU algorithm (double precision)

if $x > 10$
 if $x - n > \delta$
 return n
 else if $C(n) < u$ "correction" test
 return n
 else
 return $n - 1$
end
end
end

use bottom-up summation to determine n

if $u > 0.5$ and not accurate enough
 use top-down summation to determine n
end
L_1 errors of `poissinvf` and `poissinv` functions written in CUDA.
(It measures the fraction of the $(0, 1)$ interval for which the error is ± 1.)
Performance

Samples/sec for poissinvf and poissinv using CUDA 5.0

<table>
<thead>
<tr>
<th>λ</th>
<th>poissinvf</th>
<th>poissinv</th>
<th>GTX670</th>
<th>poissinvf</th>
<th>poissinv</th>
<th>K20</th>
<th>poissinvf</th>
<th>poissinv</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.25e10</td>
<td>1.03e09</td>
<td>1.94e10</td>
<td>5.29e09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.66e09</td>
<td>3.70e08</td>
<td>8.77e09</td>
<td>2.07e09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>8.07e09</td>
<td>6.98e08</td>
<td>1.25e10</td>
<td>4.20e09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>8.38e09</td>
<td>6.98e08</td>
<td>1.25e10</td>
<td>4.20e09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mixed</td>
<td>4.91e09</td>
<td>3.00e08</td>
<td>6.83e09</td>
<td>1.64e09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normcdfinvf</td>
<td>1.96e10</td>
<td></td>
<td>2.70e10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normcdfinv</td>
<td>9.61e08</td>
<td></td>
<td>7.15e09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- By approximating the inverse incomplete Gamma function, have developed an approach for inverting the Poisson CDF for $\lambda > 4$
- Computational cost is roughly cost of inverse Normal CDF function plus three polynomials of degree 8–12
- Report and open source CUDA implementation available now: http://people.maths.ox.ac.uk/gilesm/poissinv
- Report also describes a second approximation which is faster for CPUs, but has more branching so is worse for GPUs