
Concurrent learning of a Probabilistic
Graphical Model on the GPU

Michał Matuszak
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland

P ase diagrams for ocally
Hopfield neu al net orks in

presence of correlated patte n

F . P iękniewski and . Schreiber

P reprint No 8/ 2005

Abstract
We introduce an algorithm for determining optimal transition paths between given
configurations. The solution is obtained by solving variational equations for
Freidlin–Wentzell action functionals. One of the applications of the method presented is a
system controlling motion and redeployment between unit’s formations. The efficiency of
the algorithm has been evaluated in a simple sandbox environment implemented with the
use of the NVIDIA CUDA technology.

Introduction
One of the approaches to describe the motion of the system of interacting particles is
based on a variational principle. It is assumed in a classical mechanics that the trajectory
of a system between two points in the space minimizes the action functional. Then by a
variational calculus one obtains Euler-Lagrange equations of motions. Reformulation of
such approach to the case of the space of curves in a set-up well suited for our needs was
presented in [2].
Here we use Gaussian networks. The term Gaussian network describes an extension of a
Bayesian networks to continuous variables. Gaussian networks are widely used for
decision making and inference. Given a Gaussian belief network, we can generate a
multivariate normal density, and vice versa.

1 2 3

4 5

a42 a52

a12 a32

a53

(a) Gaussian Network (b) Transition

Figure : (a) a schematic representation of nodes in a Gaussian network, (b) noise allows for a rare transitions
between stable configurations.

In Fig. 1(a) we can see a simple Gaussian network. Each node is characterized by a mean
and a variance of a normally distributed random variable and the relative importance of
its parents.
More specifically, we use stochastic diffusion processes whose behavior is effectively
characterized by the large deviation theorems due to Freidlin and Wentzell [1].

Dynamical system
Our system is represented by a dynamical Gaussian network. ψ(t) is the configuration of
the system at time t. For a Gaussian network with n nodes it is a vector in Rn which
evolves according to

ψ(t + ∆t) = ψ(t) + µ(ψ(t))∆t +
√
εΣ∆W(t), (1)

where:
� µ is called an instantaneous drift. We will assume that µ(ψ) = Bψ, for a given matrix B.
� W(t) is an n dimensional Wiener process and ∆W(t) ∼ N(0,∆t), a normal random

variable.
� A = ΣΣT.
Six pictures below represent dependencies (arcs) in Gaussian network for our example.

Simple formations such as line or double line require only a connection between nearest
nodes. In more complex structures we have to extend number of arcs. In circle formation
each node is connected to adjacent nodes and to their neighbours. Formations wee and
wedge require additional connection to the nodes on the opposite branch.

Formation
More formally the formation is represented by a Gaussian network with units as nodes
and presented connections as arcs. For each pair of connected nodes x and y a pair of
vectors is given:
��vx→y
��vy→x = −�vx→y
For movement of the group of agents let N(x) denote the number of neighbors of node x, �v
the velocity of the entire formation and α ∈ [0, 1] represents the impact of the neighbors on
node position then state of x in time t + ∆t is defined as follow

ψ(x)(t + ∆t) = ψ(x)(t) (1 − α∆t) +−→v ∆t + α∆t


 1

N(x)

∑
y∼x

(
ψ(y)(t) +−→v y→x

)

 (2)

Minimisation
In continuous time, Eq.(1) can written as the Ito stochastic differential equation

dψ(t) = dBψ(t)dt +
√
εΣdW(t) (3)

Denote a local steering contribution as ẇt∆t = ΣN(0,∆t). Then wt is called the full ”error”
or the fluctuation (deviation) of our system.
For ψ, which represents the trajectory, we have

(ψ̇− Bψ) = ẇ

We propose the following Lagrange function which defines our system:

L(ψ, ψ̇) =
1
2

〈
ψ̇− Bψ, A−1 (ψ̇− Bψ

)〉
=

1
2
(
ψ̇− Bψ

)
A−1 (ψ̇− Bψ

)′ ,
where by a prime we denote a transpose of a given matrix.
The Least Action Principle, of fundamental use for our applications, indicates that the
system moves along the path which minimizes the action functional:

∫b

a
L(t,ψt, ψ̇t)dt = S(ψ) (4)

To minimize the action functional we use the Euler-Lagrange differential equation

δL
δψ

−
d
dt

(
δL
δψ̇

)
= 0. (5)

Solving the Euler-Lagrange equation leads us to:

ψT = exp(TB)ψ0 +

[∫T

0
exp((T − s)B)ẇsds

]

To utilise the previous result we should also calculate ẇ0. For simplicity we assume that
A = 1.

ẇ′
0 = 2B [1 − exp(−2TB)]−1 [exp(−TB)ψT −ψ0] (6)

Algorithm
The following procedure lies at the heart of the algorithm. The starting configuration ψ0
and matrix B must be given.

1. Set the timer t := 0.
2. If the transition does not occur, then

2.1 Use the rules given by Eq. 1

ψ(t + ∆t) = ψ(t) + Bψ(t)∆t +
√
εN(0,∆t)

2.2 Set t := t + ∆t.
3. If the transition occurs, then

3.1 Compute initial steering configuration for a given transition time T, given be Eq. 6 and denote it as ẇ(t).
3.2 Set local timer t1 := 0.
3.3 Compute the new configuration

ψ(t + ∆t) = ψ(t) + (Bψ(t) + ẇ(t))∆t

3.4 Update the local steering contribution

ẇ(t + ∆t) = ẇ(t) − (Bẇ(t))∆t

3.5 Set t1 := t1 + ∆t
3.6 Update global timer t := t + ∆t and, if t1 < T, return to 3 else terminate the transition stage.

4. Return to 2

This research has been supported by the National
Science Centre grant 2011/01/ N/ST6/00573 (2011-2014).

Results
The programme has been implemented in language D. Some matrix operations
incorporate LAPACK, BLAS and CUBLAS subroutines. All test runs were executed on a
machine with Intel Core 2 Q9300 2.50 GHz CPU, 4GB RAM and NVIDIA GTX 480. The
application is single threaded, so it is applicable to the core of only one processor. All
computations were performed with double precision arithmetic.

(a) (b)

The mean square error (MSE) between the target configuration a simulated one can by
controlled by adjusting step size. For transition time set on 2.0 and step size on 0.002 the
MSE was always lower than 0.0001.
In the following table we can see dependencies between the number of simulated objects
(tanks) and the time required for a single step and a transition.

quantity step (ms) CPU (ms) GPU (ms) speedup
25 0.04 1.7 40 0.07
100 0.6 24 109 0.22
169 1.6 75 193 0.38
225 3.1 172 275 0.63
400 9 680 637 1.07
625 22 2200 1470 1.50
900 49 12000 3480 3.45

1225 89 54000 6890 7.84
1600 155 253000 12400 17.57
2025 240 785000 26200 29.96

As we can see, a single step can be computed very fast. The most consuming part during
w0 calculation is matrix exponential. We should emphasise that computations are
performed for x, y and z coordinates independently.

On the left we can see transitions of 25 units from square formation to circle. On the right
121 tanks redeploy from circle to wedge configuration.

Bibliography

[1] Freidlin, M.I., Wentzell, A.D. Random perturbations of dynamical systems, Vol.
260, Grundlehren der Mathematischen Wissenschaften (2nd ed.) New York:
Springer-Verlag (1998).

[2] Heymann, M., Vanden-Eijnden, E. The Geometric Minimum Action Method: A Least
Action Principle on the Space of Curves, Comm. Pure Appl. Math. 61.8, 1052-1117
(2008).

contact Name

Michal Matuszak: gruby@mat.umk.pl
Poster

P4267

Category: Machine Learning & AI - ML08

