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algorithm, and accelerated with graphics processors. assigned to it independent of other processors.

Code behavior with varying input parameters and sizes. The plots are shown for GPU (top row) and for
comparison multicore CPU (bottom row). In the case of multicore CPU, we have a total of 32 OpenMP
threads.

(Left) Execution time with varying input tile sizes, number of tiles = 1 and number of iterations = 40k.
(Middle) Execution time with varying number of tiles, tile size = 512 x 512 and number of iterations = 10k.
(Right) Execution time with varying number of iterations, tile size = 512 x 512 and number of tiles = 1.

p 2 t: We first do a round robin distribution of processors to tiles as depicted in
figure below, resulting in the assignment of more than one processor to each tile.
The second level in the our parallel hierarchy scheme is distributed memory
parallelization of each tile across multiple processes. We perform a one-
dimensional decomposition of the tile along rows among the assigned processors.
See illustration below.

reverse monte carlo

Reverse Monte Carlo (RMC) modeling is a variation of the standard Monte Carlo
procedures, and is a popular general method of structural modeling based on
experimental data [1]. We start with a randomized initial configuration of n
particles within a matrix M with periodic boundary conditions. RMC s an
iterative procedure where in each iteration a new model configuration is
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matrix. This update U is then simply added
to the structure factor.

products of participating rows and columns,
to be added to the structure factor.
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