
Purpose

Above: The Raman-shifted Eye-safe Aerosol Lidar (REAL) at California State University Chico.

The REAL is an atmospheric light detection and ranging (lidar) system. It produces near-horizontal and vertical cross-sectional
images of the lower atmosphere. The images reveal the spatial distribution of atmospheric aerosol (particulate matter).
By applying motion estimation algorithms to image sequences, two-dimensional wind velocity �elds can be determined.

In our previous work, we applied cross correlation (a technique commonly used in partical image velocimetry) to estimate the
motions of aerosol features and thus estimate remote wind velocity [1]. We have applied this method to real-time wind velocity
estimation by utilizing GPU computing to accelerate cross correlation algorithms [2]. We are now exploring the use of
wavelet-based optical �ow as another method for estimating wind velocity. Optical �ow can overcome some of the limitations of
the cross correlation based methods such as resolving �ner levels of turbulence and vorticity. By using GPU computing, we can
create a real-time wind estimation system similar to the previous one that used cross correlation.

Time

motion estimation motion estimationmotion estimation

Fig.1: Scans from August 23, 2013 in Chico, CA. Pairs of consequtive scans along time (top) are passed through an optical-�ow-
based motion estimation program to create vector �ow �elds for each pair. These �ow �elds are rendered as streamlines (bottom).

Scans produced by REAL are composed of radial samples of backscatter intensity. These values are converted to decibels and are
passed through a high-pass median �lter to remove large-scale features caused by backscatter attenuation [1]. The scans are then
interpolated onto uniform 2D Cartesian grids, as shown in the images below. By performing motion estimation between
consecutive scans, we can measure the displacement of aerosol features between scans. By dividing the displacement by the
time di�erence between the scans, we can estimate the instantaneous wind velocity between the scans. Horizontal scans
produced by REAL are usually completed within 10 to 20 seconds. In order to estimate wind velocity �elds in real-time, we must
compute motion estimations between scans within that time window.

Concept

Wavelet-based Optical Flow __device__ void decimateColumns(const double* signal, int sizeS, int nColumns,
 const double* filter, int sizeF, int offsetF,
 int localRowIdx, int localRowDim, double* result){
 const int sizeR = sizeS/2;
 const int sizeS_1 = sizeS-1;
 double temp[DWT_COL_ROWMULT];
 double segment[DWT_COL_ROWMULT*2];
 //-for each signal value
 for (int n = 0; n<sizeR; n+=(localRowDim*DWT_COL_ROWMULT)) {
 int rowIdx = n + (localRowIdx*DWT_COL_ROWMULT);
 if(rowIdx < sizeR){
 #pragma unroll
 for(int i=0; i<DWT_COL_ROWMULT; ++i) temp[i] = 0.0;
 int z = 2 * (rowIdx+(DWT_COL_ROWMULT-1)) - offsetF;
 z = (z<0)?((sizeS + z%sizeS)%sizeS):z%sizeS;
 #pragma unroll
 for(int i=DWT_COL_ROWMULT*2-1; i>=0; --i){
 segment[i] = signal[nColumns*(z--)];
 z = (z>=0)?z:sizeS_1;
 }
 //-for each filter value
 for(int k=0; k<sizeF; k++){
 double filterVal = filter[k];
 #pragma unroll
 for(int i=0; i<DWT_COL_ROWMULT; ++i)
 temp[i] += segment[2*i+1]*filterVal;
 //shift values from the first row to the last row
 //insert new value in first row
 #pragma unroll
 for(int i=DWT_COL_ROWMULT*2-1; i>0; --i)
 segment[i] = segment[i-1];
 segment[0] = signal[nColumns*(z--)];
 z = (z>=0)?z:sizeS_1;
 }
 #pragma unroll
 for(int i=0; i<DWT_COL_ROWMULT; ++i)
 if(rowIdx < sizeR-i) result[(rowIdx+i)*nColumns] = temp[i];
 }//if(rowIdx < sizeR)
 }//for(int n = 0; n<sizeR; n+=(localRowDim*DWT_COL_ROWMULT))
}

Fig. 3: Column-wise decimation kernel for forward wavelet transform written in CUDA C.

Optical �ow is a computer vision method commonly used
for video compression, object tracking, and motion
estimation.

Our in-house code, Typhoon, is dedicated to �uid motion
estimation. It relies on a wavelet representation of the
displacement components [3], to take advantage of the
multi-scale nature of wavelet bases as well as their regularity
properties. The wavelet coe�cients are the unknowns to
the problem. For a typical wind estimation from lidar data, it
represents 0.5 to 1 million unknowns simultaneously
estimated by minimizing the Displaced Frame Di�erence
model (shown below).

2D DWTs are calculated by performing 1D DWTs along the rows of an image, and
then 1D DWTs along its columns. This makes it easy to compute in parallel on each
row and on each column. This was done with the original Tsunami library using
OpenMP #pragma omp parallel for on loops over rows and columns. We also
apply parallel computing not only per row/column but also per element in the
circular convolutions through the use of AVX SIMD instructions.

Our CUDA implementation of Tsunami (CuTsunami) expands upon the work done
on CPU parallelism with the added bene�ts of the GPU. When performing
convolutions along rows, we cache in shared memory the segment of the row that
is within the �lter window for all columns within a thread block. This helps mitigate
the cost of reading data from global memory.

However, when applying the row-wise method to the column-wise convolutions we
experienced some slow-down due to uncoalesced reads across rows (data is
contiguous along rows). We apply a di�erent approach for column-wise
convolutions by having each thread in a block compute multiple elements along a
row, while caching the column data in register memory. This keeps uncoalesced
global reads to a mininum while recycling data in faster register memory to further
reduce global reads. The code on the right employs this method.

This model minimizes the L2-norm between the �rst image
(S1) and the second image (S2), which is unwarped by the
displacement �eld (d).

Wavelets transforms (coe�cents <=> displacement
components) are the critical part of the estimation process:
each evaluation of the functional requires 2 inverse
(reconstruction) and 2 forward (gradient) transforms.
Since most of the execution time of the estimations is spent
calculating discrete wavelet transforms (DWT), most of
the development was focused on improving Tsunami, our
in-house DWT library. Tsunami was designed to be generic
enough to support a wide range of wavelet transform
families for 1D and 2D data. It employs circular convolution
decimation and expansion kernels for forward and inverse
transforms, respectively. Tsunami can transform data with
dimensions that are multiples of a power of 2 (i.e. images of
size 2ka x 2kb, where k>0).

Fig. 2: Each thread in column-wise convolution calculates multiple row elements
for a column. Row elements from the column are stored in a local array in register
memory (yellow) while the “leading” row (red) is read from global memory. When
the convolution shifts forward the row values are shifted back by one row, and the
next leading row is read. This procedure is performed at every value within the
�lter window.

Fig. 6: Vortex case from October 23, 2013 in Chico, CA. During a turbulant day, a vortex originates from the south-west
direction and heads north-east. The three images (top) show the vortex’s horizontal distribution of aerosol, zooming-in
closer to the vortex from left to right. Overlayed on these images are vector �ow �elds estimated by wavelet-based
optical �ow, which captured the vorticity of aerosol features. The vortex also passed over a vertical-scanning Doppler
lidar that was providing in-situ wind measurements, located 1.5 km from REAL. The time series (bottom) compares the
measurements of the Doppler lidar (yellow) with the velocites estimated by optical �ow (black) as the vortex moves
across the scan area. These measurements were taken from 100 m above ground level.

Results

1

10

100

1000

256 x 256 512 x 512 1024 x 1024 2048 x 2048 4096 x 4096

M
eg

ap
ix

el
s/

se
co

nd

Image Size

2D DWT: CPU vs GPU

CPU DWT

CPU IDWT

GPU DWT

GPU IDWT

Fig. 4: Tsunami and CuTsunami benchmarked using a Daubechies wavelet with 10 vanishing moments.

Fig. 5: CPU and GPU versions of Typhoon benchmarked with various datasets. Runtimes were averaged over 10 runs for
each set. The 256 x 256 and 1024 x 1024 images are from Particle Image Velocimetry (PIV) experiments. The 512 x 512
image is a scalar �eld being advected. The largest image is from an infrared water vapor satellite over North America.
The e�ciency of the CPU implementation degrades signi�cantly over that of the GPU version as the image size increases.

Benchmarks for the CPU and GPU versions of Typhoon where run on a workstation containing an Intel Xeon E3-1225 @ 3.1 GHz,
and an NVIDIA GeForce GTX Titan. Although multithreading and SIMD instructions in the CPU code do provide speed-up over
single-threaded code, performance decreases as image size increases. The GPU code, on the other hand, becomes more
e�cient as image size increases. The high e�ciency of our CUDA-accelerated optical �ow makes it ideal for real-time wind �eld
measurements.

Data Image Size CPU time (sec) GPU time (sec) Speed-Up
Particles 256 x 256 1.0383 0.1464 7.092
Scalar 512 x 512 6.9362 0.7266 9.546
Particles 1024 x 1024 30.968 0.9612 32.218
Satellite Water Vapor 2284 x 1339 1049.152 13.5482 77.438

[1] Mayor, S. D., J. P. Lowe, and C. F. Mauzey, 2012: Two-component horizontal aerosol motion vectors in the atmospheric surface layer from a cross-correlation algorithm applied to elastic backscatter lidar data. J. Atmos. Ocean. Technol., 29, 1585-1602.
[2] Mauzey, C. F., J. P. Lowe, and S. D. Mayor, 2012: Real-time wind velocity estimation from aerosol lidar data using graphics hardware. Poster presentation AV10 at the GPU Technology Conference,14-17 May 2012, San Jose, CA.
[3] Dérian, P., Héas, P., Herzet, C., and Mémin, E. 2013: Wavelets and optical �ow motion estimation. Numerical Mathematics: Methods, Theories and Applications, Vol 6, pp. 116-137.

References

Project funded by Grants 0924407& 1228464 from the National Science Foundation’s Physical and Dynamic Meteorology Program.
Acknowledgements

Presented by the Atmospheric Lidar Research Group at California State University Chico. http://phys.csuchico.edu/lidar/

Wavelet-Based Optical Flow for Real-Time Wind Estimation Using CUDA
Chris Mauzey

cmauzey@mail.csuchico.edu
Pierre Derian

pderian@csuchico.edu
Shane D. Mayor

sdmayor@csuchico.edu
California State University Chico

contact Name

Christopher Mauzey: cmauzey@mail.csuchico.edu
Poster

P4253

Category: Computer Vision - CV09

