
Applying GPU Dynamic Parallelism to High-Performance Normalization of Gene Expressions
Roberto P. Souto1, Carla Osthoff1, Ana T. R. de Vasconcelos1, Douglas A. Augusto1, Pedro L. da Silva Dias, Andres Rodriguez2, Oswaldo Trelles2, Manuel Ujaldon2

1National Laboratory for Scientific Computing, 2University of Malaga
email: {rpsouto,osthoff,atrv,douglas,pldsdias}@lncc.br, {andres,ots,ujaldon}@uma.es

1 Introduction

High-density oligonucleotide microarrays allow several millions of genetic markers in
a single experiment to be observed. Current bioinformatics tools for gene expression
quantile data normalization are unable to process such huge data sets. In parallel with
this reality, the huge volume of molecular data produced by current high-throughput
technologies in modern molecular biology has increased at a similar pace, challenging
our capacity to process and understand data. The arrival of CUDA has unveiled the
extraordinary power of Graphics Processing Units (GPUs) to accelerate data intensive
general purpose computing. In this work we have evaluated the use of dynamic paral-
lelism for ordering gene expression data, where the management of kernels launching
can be done not only by the host, but also by the device. We have compared the per-
formance of the sequential quicksort algorithm from the GNU C Library (glibc) with
the parallel implementation available in the CUDA-5.5 Toolkit Samples.

2 Q-norm: an algorithm for normalizing oligonucleotides

The ultimate goal of the Q-norm method is to make the distribution of probe intensi-
ties for each array in a set of samples the same [2], under the assumption that there
is an underlying common distribution for all those samples. This suggests that one
could give two disparate data sets the same distribution by transforming the quantiles
of each data set to have the same value, which will be their average value. Extending
this idea to N dimensions gives us a method of finding a common distribution from
multiple data vectors.
Let qk = (qk1, ...,qk1) for k = 1, ...,nG be the vector of the kth quantiles for all nE array
experiments/samples of length nG which compose matrix X of dimensions nG×nE
where each sample is a column. The quantile normalization goes as follows:
1. Sort each column of X to give Xsort;

2. Take the means across rows of Xsort and assign this mean to each element in the row
to get xavg sort vector;

3. Produce Xnorm as output by rearranging xavg sort vector to have the same ordering
as original X.

This method forces the values of quantiles to be equal, which may cause problems in
the tails where it is possible for a probe to have the same value across all the array
samples. However, this case is unrealistic since probeset expression measures are
typically computed using the value of multiple probes.

3 Recursive QuickSort Algorithm and Dynamic Parallelism

The quicksort algorithm is one of the most popular in the task of sorting the data.
It is an algorithm that employs a strategy of divide-and-conquer, that consists of re-
cursively partitioning the data list according to a choice criterion of a pivot element.
Having selected a list element pivot, it is divided into two parts: the left part with the
elements smaller than or equal to the pivot, and the right part with the elements larger
than the pivot. And this is done successively and may be done recursively. However,
in previous GPU architectures to Kepler, each new call to quicksort kernel should be
performed from the host (CPU). The dynamic parallelism introduced by K20 GPU
allows new calls to quicksort are made from the device itself, no longer needed to be
made by the host. With this, it is maintained recursion inherent quicksort algorithm,
boosting performance.

4 Results

This section presents the computational performance of the Q-norm method using the
quicksort algorithm from the GNU C Library (glibc)-qsort function as defined in
stdlib.h-and also the GPU implementation from the NVIDIA CUDA-5.5 Toolkit
Samples [5].
In both CPU and GPU implementations, the quicksort algorithm receives as input to
be sorted an array of struct containing information of the value and original index
of each element of the data set. It was done this way so that it is possible to recover
the original position of the data after obtaining the average of all sorted experiments.

4.1 The input data set

The input data set was taken from the GEO (Gene Expression Omnibus) Web repos-
itory as submitted by Affymetrix under the GeneChip Human Mapping 500K Array
Set (platform GPL3718).
The high computational cost and memory requirements of the Q-norm method result
from its application to huge data sources, which in our case means arrays composed
of more than 6 million gene expression values.
Each array contains positive integers values that were obtained by high-density
oligonucleotide microarray technology provided by the Affymetrix GeneChip infras-
tructure [6], which is widely used in many areas of biomedical research.
Those integers are the target numbers to normalize, usually by means of some kind
of averaging over every array element placed in the same quantile [3].
In the experimental case of this work, it is considered nE = 32 samples (number of
arrays), with each one composed of nG = 6,553,600 gene expression values.

4.2 Performance Analysis

The experiments were carried out by first using exclusively the CPU in serial mode
(a single core) for all stages of Q-norm, and later a mixed approach in which only the
demanding sorting stage computed by quicksort is executed in parallel on the GPU
(the other stages remain on the CPU, in sequential).
The configuration of computing resources was a CPU Intel Xeon E5650 and and a
GPU NVIDIA Tesla K20c.

Table 1: Sort algorithms used
Agorithm Function Library
qsortcpu qsort GNU glibc library
qsortgpu quicksort_cdp CUDA-5.5 samples

According to Table 2, the speed-up achieved by the quicksort routine alone was about
22.8 times faster than the exclusively serial code.
However, when we also consider the cost of data transfer between CPU and GPU
(cudaMemcpy function), this gain drops to about 14.1 times faster.
Moreover, when considering the total execution time of the method Q-norm, the
speed-up is further reduced to about 4.8 times.

Table 2: Q-norm performance of CPU and GPU sorting algorithms
Time in seconds

CPU GPU
qsortcpu qsortgpu

QNormMain 33.69 6.80
LoadFile 0.26 0.38
sortingAlgorithm 29.51 1.30
AccumulateRow 0.31 0.25
backPos 2.06 2.45
StoreFile 0.49 0.45
cudaMemcpy - 0.80

5 Final Remarks

This work has presented methods for computing a quantile normalization of high-
density oligonucleotide array data on GPUs. Our approach focuses on CUDA-5.5,
which allows for exploiting dynamic parallelism offered by the GPU Kepler archi-
tecture. The results show that in the studied application the GPU parallel version
with dynamic parallelism attains good speed-ups in the data sorting step. For future
work we plan to evaluate the following hybrid parallelization strategies to achieve an
effective overall speed-up considering the performance of the whole application, us-
ing strategies combining MPI+GPU or OpenMP+GPU. Moreover, in order to better
evaluate the impact of dynamic parallelism, we can also adapt the original parallel
recursive quicksort of the CUDA Toolkit Samples, to a non-recursive version of it.
Thus, new quicksort launches are done only from the host.

Acknowledgments

The authors thanks to Brazilian Research Agency - CNPq (301877/2013-0), FAPERJ
(E-26/102.025/2009) and CUDA Teaching Center Program.

References

[1] The GeneChip Human Mapping 500K Array data set Submitted to GEO by
Affymetrix. http://www.ncbi.nlm.nih.gov/geo/

[2] B.M. Bolstad, R.A. Irizarry, M. Astrand, and T.P. Speed. A Comparison of Nor-
malization Methods for High Density Oligonucleotide Array Data based on Vari-
ance and Bias. Bioinformatics, 19(2):185-193, 2003.

[3] R.A. Irizarry, B. Hobbs, F. Colin, Y.D. Beazer-Barclay, K. Antonellis, U. Scherf,
and T.P. Speed. Exploration, Normalization and Summaries of High Density
Oligonucleotide Array Probe Level Data. Biostatistics, 4(2):249?264, 2003.

[4] J.M. Mateos-Duran, P. Prins, A. Rodriguez, and O. Trelles. Q-norm: A library
of parallel methods for gene-expression q-normalization. In Bioinformatics
Open Source Conference, Stockholm (Sweden), June 2009.

[5] NVIDIA. CUDA Samples - CUDA Toolkit Documentation.
http://docs.nvidia.com/cuda/cuda-samples/index.html#advanced-quicksort–
cuda-dynamic-parallelism

[6] J.A. Warrington, S. Dee, and M. Trulson. Large-Scale Genomic Analysis Using
Affymetrix GeneChip, chapter 6, pages 119?148. Microarray Biochip Technolo-
gies. BioTechniques Books, New York, USA, 2000

contact Name 

Roberto Pinto Souto: rpsouto@lncc.br
Poster 

P4209	

Category: Bioinformatics & Genomics - BG10


