k-Nearest Neighbors Algorithm

- Classification algorithm
- Generally regarded as one of the most important machine-learning algorithms.
- Given a dataset of points (training set) with known attributes and known classification, a point with known attributes but unknown classification is classified based on a weighted average of its most similar points among the training set. In terms of application and complexity, the algorithm can be broken down as follows:
 - **Distance Calculation Phase**
 - Measure the (Euclidian) distance from the query point to all N points in the training set.
 - \(O(N) \)
 - Embarrassingly parallelizable
 - **Sorting Phase**
 - Sort all N elements of the Training Set by their distance from the query point.
 - Using Introsort: \(O(N \times \log(N)) \) - average complexity-driver
 - **Classification Phase**
 - Determine query point’s classification based on a weighted average of the k-first elements of the sorted set.
 - \(O(k) \)
 - \(k \) is very small (we used 10), and is therefore negligible in terms of complexity

Massively Parallel kNN using CUDA on Spam-Classification

Joshua M. Smithrud\(^1\), Patrick McElroy\(^1\), Razvan Andonie\(^2\)

\(^1\) Undergraduate Researcher, \(^2\) Faculty Advisor
Department of Computer Science, Central Washington University

Theoretical Results

- Massively Parallel Reduction using CUDA
 - Given the following:
 - A training set with \(N \) points
 - A GPU with a maximum of \(T \) concurrently running threads, \(t \) possible threads-per-block, where the number of blocks used is \(b = \lceil T / t \rceil \)
 - We divide the \(N \) training set points into a number of blocks (\(b \)) such that each block is utilizing its maximum number of threads (\(t \)).
 - If \(N > T \), then, we loop as many times as necessary to handle all \(N \) points.

 ![Massively Parallel Reduction](image)

- Each block reduces its \(\leq t \) points by comparing adjacent pairs, until the minimum \(k \) points within the block are found. Each block returns its \(k \) points with minimum distance.

 ![Massively Parallel Reduction](image)

- This set of \(k \times b \) points is then passed back into this same process, which is repeated until the absolute \(k \)-closest points are found, at which point the object in question is classified based on a weighted average of the remaining \(k \).
- This Parallel Reduction method yields a complexity of approximately \(\lceil N / T \rceil \times \log_2(512) \times \log_51.2(30720) \times \log_2(t) + \text{Overhead} \).

Experimental Results

- **GPU** allowed for:
 - \(T = 30 \) multiprocessors \(\times 32 \) concurrent warps \(\times 32 \) threads/warp = 30720
 - \(t = 512 \)
 - We used \(k = 10 \)
 - Ignoring the overhead yielded from copying data from main memory to GPU memory, the resulting theoretical complexity obtained is \(N / 30720 \times 10 \times \log_2(512) \times \log_51.2(30720) \)
 - Approximately 236.281 \(\times \lceil N / 30720 \rceil \)

- **Memory**
 - Standard Memory Config: 896MB
 - Memory Interface: GDDR3
 - Memory Interface Width: 448-bit
 - Memory Bandwidth (GB/sec): 127.0

Our Research Done Using...

- **OS:** Windows 7 Ultimate
- **CPU:** Intel i7 950
- **Memory:** 12GB DDR3 1600
- **GPU:** GeForce GTX 275

More About Us

- Joshua M. Smithrud
 - Has a B.A. in Mathematics from the University of Washington
 - Graduating in March with a B.S. in Computer Science
- Patrick McElroy
 - Graduating in March with a B.S. in Computer Science
- Razvan Andonie
 - Professor and Director of the Computational Science Master’s Program at Central Washington University

- CUDA Cores: 240
- Graphics Clock (MHz): 633MHz
- Processor Clock (MHz): 1404MHz
- Texture Fill Rate (billion/sec): 50.6

Our Solution

- **Overall complexity:** \(O(N \times \log(N)) \) – average
- **Application focus:** Spam-Classification