
Implementing Modern Short Read DNA
Alignment Algorithms in CUDA
Jonathan Cohen
Senior Manager, CUDA Libraries and Algorithms

http://www.gputechconf.com/page/home.html

Next-Gen DNA Sequencing

 In 4 slides

Replication

C

A

T

G

Sensing Circuitry
…

DNA

Sample

G C

Image courtesy Life Technologies
Image courtesy Life Technologies

Image courtesy Life Technologies

Chemistry => Voltage signal => Recognized Nucleotide

Inside the Micro Well

Image courtesy Life Technologies

Short Reads – Mapped to Reference

CATAGATTGACAAATGACCAGATAAGGATACAATTAGCGGCCACAGAGGCGAGATTAAGTGGCAGATAG

GACTAGATAAGGATACA

ATAAGGATACAATTAGCG

GGCGACAGAGGTAAGA

GTCGAGATTAAGTGGC

Critical Data Structure: FM-Index

 Query: “Find all substrings beginning with ‘X’ in reference”

 Incremental Query: “Given all substrings beginning with ‘X’,

find which begin with ‘XY’”

 Build substring search results letter by letter

 Each incremental query is O(1)

Modern Mapping Algorithm - BWA

 BWA – bounded 9-ary exponential search

 To match: CACCT, 1 allowed mismatch

— [Match] Search for C…, recurse on “ACCT”, 1 allowed mismatch

— [C->A] Search for A…, recurse on “ACCT”, 0 allowed mismatches

— [C->T] Search for T…, recurse on “ACCT”, 0 allowed mismatches

— [C->G] Search for G…, recurse on “ACCT”, 0 allowed mismatches

— [Del] recurse on “ACCT”, 0 allowed mismatches

— [Ins. A] Search for A…, recurse on “CACCT”, 0 allowed mismatches

— …

— [Ins. C] Search for C…, recurse on “CACCT”, 0 allowed mismatches

Modern Mapping Algorithms – Bowtie2

 Seed and extend

— find a small matching “seed” substring (allowing some errors,

similar to BWA)

— extend in either direction with Smith Waterman (or Edit Distance)

 Either:

— Use heuristics to only extend “promising seeds” (best mapping)

— Extend all seeds, guaranteed to find all matches within allowed

error (all mapping)

 The Problem with Both Approaches: Branchy Code!

GPUs have tons of bandwidth and ops/sec

But they are wide SIMT…

=> perf ~ utilization

And branchy code often means low utilization…

=> Read mapping algorithms not fit for GPUs ?

FALSE!

Branchy Code on GPUS

Stop thinking serially

think of your code as a pipeline whose stages are formed by

the bodies of your branches

 and embrace the concept of pipeline parallelism

Branchy code and GPUs

An Example
void process(int i)

{

State state(i);

while (state.is_done() == false) // taken 30% of the times

{

if (state.A_flag) // taken 50% of the times

{ // => 15% utilization!

if (state.B_flag) // taken 33% of the times

 AB(state); // => 5% utilization!

else

 A(state); // => 10% utilization!

}

else if (state.B_flag) // taken 50% of the times

B(state); // => 15% utilization!

if (state.C_flag) // taken 33% of the times

 C(state); // => 10% utilization!

}

}

while (...)

AB()

A_flag
C()

B()

A()

A_flag &

B_flag

B_flag

i

Work flows through queues in the form of packets

State can either flow with the work packets or be dereferenced

(or both)

At the entry point of each stage utilization is 100%

Pipeline Parallelism

__host__ bool pipeline() { // pipeline scheduler - CPU

if (while_q.size() > thresh) while_stage<<<while_q.size()>>>();

if (AB_q.size() > thresh) AB_stage<<<AB_q.size()>>>(); // etc.

return while_q.empty() && AB.empty() && ...;

}

__global__ void while_stage() { // primary stage - GPU

const int tid = thread_id(); // thread id

if (tid >= in_queue.size()) return;

const State state = in_queue[tid]; // fetch work from input queue

if (state.A_flag)

{

if (state.B_flag) AB_queue.push(state);

else A_queue.push(state);

}

else if (state.B_flag) B_queue.push(state);

else if (state.C_flag) C_queue.push(state);

}

An Example, Revisited

At the entry point of each stage utilization is 100%

each stage a kernel => reduced register pressure,

 higher occupancy

Before launching work from a queue, the work packets can be

sorted for better memory coherence

Cons

Some additional memory traffic, but mostly coherent

Pros

nvBWA

 Proof-of-concept using this concept

 C2075: 3-4x vs. BWA on a 6-core SNB, 4-5x vs. BarraCUDA

nvBowtie2

 From-scratch implementation of Bowtie2 algorithm

 Transformed using pipeline parallelism approach

 Many other system-level of algorithm optimizations

 Goal is to produce the same results (or statistically identical

results)

Best-mapping

 ERR012100 dataset, 10M x 100bp reads

 (Masai uses a superior algorithm, we are working on a port)

Software Hardware Time

Bowtie2 (SW) Xeon X5650, 1 core 57m:41s

Bowtie2 (SW) Sandybridge, 6 core (est.) 285s (best-case estimated)

nvBowtie2 (SW) K20C 65.1s

Masai (ED=5) Xeon X5650, 1 core 24m.56s

Masai (ED=5) Sandybridge, 6 core (est.) 125s (best-case estimated)

nvBowtie2 (ED=5) K20C 48.5s

nvBowtie2: wgsim (1M x 100bp)

Best Mapping – longer reads

 SRR493095 dataset, 857K x 150bp reads

Software Hardware Time

Bowtie2 Core i7-3930K (12 threads) 57.4s

nvBowtie2 K20C 11.8s

All Mapping

 ERR012100 dataset, 10M x 100bp reads

 (Masai uses a superior algorithm, we are working on a port)

Software Hardware Time Best-case Sandybridge (est.)

RazerS3 Xeon X5650 (1 core) 3653m:03s 304m:26s

Hobbes Xeon X5650 (1 core) 2319m:27s 193m:17s

mrFAST Xeon X5650 (1 core) 4462m:25s 371m:52s

Masai (ED=5) Xeon X5650, 1 core 284m:34s 23m:43s

nvBowtie2 (ED=5) K20C 31m:7s

Questions?

 Most of this work from Jacopo Pantaleoni

 Questions to:

jpantaleoni@nvidia.com

jocohen@nvidia.com

mailto:jpantaleoni@nvidia.com
mailto:jocohen@nvidia.com

