Implé’ﬁiéntmg Modern Short Read DNA"
Alignment Algorithms in CUDA

Jonathan Cohen
Senior Manager, CUDA Libraries and Algorithms

http://www.gputechconf.com/page/home.html

Next-Gen DNA Sequencing

= |[n 4 slides

lon-sensitive layer:

Proprietary. Ion sensb

% *4.

Image courtesy Life Technologies

Inside the Micro Well

Image courtesy Life Technologies

Short Reads - Mapped to Reference

GACTAGATAAGGATACA
ATAAGGATACAATTAGCG
GGCGACAGAGGTAAGA
GTCGAGATTAAGTGGC

CATAGATTGACAAATGACCAGATAAGGATACAATTAGCGGCCACAGAGGCGAGATTAAGTGGCAGATAG

Critical Data Structure: FM-Index

» Query: “Find all substrings beginning with ‘X’ in reference”

* [Incremental Query: “Given all substrings beginning with ‘X’,
find which begin with ‘XY’”

= Build substring search results letter by letter

» Each incremental query is O(1)

Modern Mapping Algorithm - BWA

* BWA - bounded 9-ary exponential search

= To match:

ACCT, 1 allowed mismatch

— [Match] Search for C..., recurse on “ACCT”, 1 allowed mismatch

— [C->A
- [CT
— [C->G]
— [Del]

— [Ins. A]

— [Ins. C]

Search for A..., recurse on “ACCT”, 0 allowed mismatches
Search for T..., recurse on “ACCT”, 0 allowed mismatches
Search for G..., recurse on “ACCT”, 0 allowed mismatches
recurse on “ACCT”, 0 allowed mismatches

Search for A..., recurse on “CACCT”, 0 allowed mismatches

Search for C..., recurse on “CACCT”, 0 allowed mismatches

Modern Mapping Algorithms - Bowtie2

= Seed and extend

— find a small matching “seed” substring (allowing some errors,
similar to BWA)

— extend in either direction with Smith Waterman (or Edit Distance)
= Either:

— Use heuristics to only extend “promising seeds” (best mapping)

— Extend all seeds, guaranteed to find all matches within allowed
error (all mapping)

= The Problem with Both Approaches:

Branchy Code on GPUS

* GPUs have tons of bandwidth and ops/sec

¢ But they are wide SIMT...
® => perf ~ utilization
® And branchy code often means low utilization...

¢ => Read mapping algorithms not fit for GPUs ?

Branchy code and GPUs

® Stop thinking serially

* think of your code as a pipeline whose stages are formed by
the bodies of your branches

® and embrace the concept of pipeline parallelism

An Example

void process(int 1)
{

State state(i);

while (state.is_done() == false)

{

if (state.A_flag) // taken 50% of the times
{ // => utilization!
if (state.B_flag) // taken 33% of the times
AB(state); // => utilization!
else
A(state); // => utilization!
}
else if (state.B_flag) // taken 50% of the times

B(state); // => utilization!

if (state.C_flag)
C(state);

// taken 33% of the times
// => utilization!

A flag

B flag

Pipeline Parallelism

* Work flows through queues in the form of packets

* State can either flow with the work packets or be dereferenced
(or both)

® At the entry point of each stage utilization is 100%

An Example, Revisited

__host__ bool pipeline() {
if (while_g.size() > thresh) while_stage<<<while_q.size()>>>(Q;
if (AB_g.size() > thresh) AB_stage<<<AB_q.size()>>>(Q);
return while_q.empty() && AB.empty() && ...;

}

—global__ void while_stage() {
const int tid = thread_id();
if (tid >= in_queue.size()) return;

const State state = in_queue[tid];
if (state.A_flag)
{
if (state.B_flag) AB_queue.push(state);
else A_queue.push(state);
}
else if (state.B_flag) B_queue.push(state);
else if (state.C_flag) C_queue.push(state);

Pros

& At the entry point of each stage utilization is 100%

¢ each stage a kernel => reduced register pressure,
higher occupancy

* Before launching work from a queue, the work packets can be
sorted for better memory coherence

cons

® Some additional memory traffic, but mostly coherent

nvBWA

» Proof-of-concept using this concept
= C2075: 3-4x vs. BWA on a 6-core SNB, 4-5x vs. BarraCUDA

score == current best?

No

nvBowtie?2

* From-scratch implementation of Bowtie2 algorithm

* Transformed using pipeline parallelism approach

= Many other system-level of algorithm optimizations

» Goal is to produce the same results (or statistically identical
results)

Best-mapping

= ERR012100 dataset, 10M x 100bp reads

Bowtie2 (SW) Xeon X5650, 1 core 57m:41s
Bowtie2 (SW) Sandybridge, 6 core (est.) 285s (best-case estimated)

nvBowtie2 (SW) K20C 65.1s
Masai (ED=5) Xeon X5650, 1 core 24m.56s
Masai (ED=5) Sandybridge, 6 core (est.) 125s (best-case estimated)

nvBowtie2 (ED=5) K20C 48.55

» (Masai uses a superior algorithm, we are working on a port)

nvBowtie2: wgsim (1M x 100bp)

bwa

bwa-sw
bwa-swe4
08 | novoalign

smalt
stampy
bowtie2

=p==nvBowtie2 ed:6 -D15 (8.5s) N FEEgsNaD
wl=nvBowtie2 ed:5 -D15 (7.85) '
nvBowtie2 ed:5-D50 (10.3s)

e vBowtie2 ed:5-D15 -R (10.95)

True positive rate (%)

soap? | bowtie

gO I 1
0% 0% 10t 10% 102 1o
False positive rate, SE [wgsim -r0.01 -d0 -e0 -1100]

Best Mapping - longer reads

» SRR493095 dataset, 857K x 150bp reads

Bowtie2 Core i7-3930K (12 threads) 57.4s
nvBowtie2 K20C 11.8s

All Mapping

= ERR012100 dataset, 10M x 100bp reads

RazerS3 Xeon X5650 (1 core) 3653m:03s 304m:26s
Hobbes Xeon X5650 (1 core) 2319m:27s 193m:17s

mrFAST Xeon X5650 (1 core) 4462m:25s 371m:52s
Masai (ED=5) Xeon X5650, 1 core 284m:34s 23m:43s
nvBowtie2 (ED=5) K20C 31m:7s

» (Masai uses a superior algorithm, we are working on a port)

Questions?

» Most of this work from Jacopo Pantaleoni

= Questions to:
jpantaleoni@nvidia.com

jocohen®@nvidia.com

mailto:jpantaleoni@nvidia.com
mailto:jocohen@nvidia.com

