Boost Your Productivity with GPGPUs and IBM Platform Computing Software

NVIDIA GTC 2013
Chris Porter, IBM
Agenda

• IBM Platform Computing offerings

• GPGPU Adoption in the HPC Market

• GPGPU Scheduling & Management
 - IBM Platform Computing Solutions for GPGPUs
 - Benefits from Intelligent GPU Scheduling & Management
 - Use Case Examples

• Summary
IBM PLATFORM COMPUTING OFFERINGS
IBM Platform Computing
The leader in cluster, grid and HPC cloud management software

- Acquired by IBM in 2012 as part of mainstream Technical Computing strategy
- 20 year history delivering leading workload and resource management software for technical computing and big data/analytics environments
- 2000+ global customers including 23 of 30 largest enterprises
- Market leading scheduling engine with high performance, mission-critical reliability and extreme scalability
- Comprehensive capability from ready-to-deploy complete cluster systems to large global grids to HPC clouds
- Large ISV and global partner ecosystem
- Global services and support coverage
IBM Platform Computing offerings

Platform LSF Family
- Scalable, comprehensive workload management suite for heterogeneous compute environments
- Unmatched experience through market share
- Powerful multi-policy scheduling engine
- Unmatched scalability through high end accounts
- Unmatched breadth of offering due to extent of add-ons

Platform HPC for System x
- Simplified, integrated, purpose-built HPC management software integrated with systems
- All-in-one integrated solution with leading web interface
- Applicable to the smallest of clusters
- Leverages Platform LSF technology base
- Hardware bundled for turnkey purchasing and deployment

Platform Symphony Family
- High-throughput, low-latency compute and data intensive analytics applications
- Leading experience due to 50%+ major investment banks as customers (translates to other industries)
- High scalability and better application performance due to fast, low latency processing (sub millisecond)
- Proven business model for sharing grid infrastructure
- Both compute and data intensive applications

Platform Cluster Manager
- Provisioning and management of HPC clusters
- Scalable offerings to simplify process of deploying and managing small clusters to global HPC clouds
- Broad heterogeneous support enables managing broad technologies and multiple workload managers
- Enables multi-tenant HPC clouds
The Application Accelerator Storm

• GPU adoption is increasing
 – 53 systems on the Top500 released in Nov, 2012 are using GPGPUs
 – GPGPUs are penetrating both high-end and mainstream HPC

• Nvidia is leading the accelerator race
 – 100’s of K’s of trained CUDA developers worldwide
 – 50 systems powered by Nvidia on the latest Top500 list

• Other accelerator technologies are emerging
 – Intel: Xeon Phi Coprocessor
 – AMD: FireStream
GPGPU ADOPTION IN THE HPC MARKET
Market Landscape: Technical Applications are Exploding

Adoption Drivers
- Creativity
- Productivity
- Visualization
- Quality

Technical Applications
- CAE
- GeoScience
- Financial
- Life-Sciences
- EDA
- Government & Education

© 2012 IBM Corporation
The Big Buzz in HPC: Hybrid Computing

• Hybrid Computing: CPUs and GPUs working together

When do I use them?
What is the ROI?
How do I schedule jobs to them?
How to maximize utilization, various published benchmarks showing dramatic performance increases?

• Applications Taking Advantage Of GPUs
 – Life Sciences
 • Unipro UGENE, Agile Molecule, many others
 – Financial Services
 • Volmaster FX, ClusterTech Financial Library, many others
 – Manufacturing
 • Fidesys, Ansys, 3ds, many others
 – Oil and Gas
 • Acceleware Seismic Solvers, many others
GPU SCHEDULING & MANAGEMENT
What do Intelligent GPU Scheduling and Management Bring to You?

• Improved application performance by allocating GPU suitable workloads on those resources and free up CPUs for other types of workloads.
• Reduced infrastructure cost by maximizing cluster utilization.
• Simplified system management via easy to use GUI and timely alerts.
• Increased productivity for administrators and application developers.
GPUs: Schedule, Monitor & Manage

• **DEPLOY:** Quickly deploy workload to GPU resources
 – Easy job submission to GPUs in a cluster via CUDA job submission wrappers
 – Install CUDA across a cluster is a couple of clicks

• **MANAGE:** Easily manage heterogeneous clusters
 – Deploy & manage both CPU & GPU resources in the same cluster
 – Remotely manage & view the status of your jobs

Take immediate advantage of the exceptional HPC performance provided by GPUs
GPUs: Schedule, Monitor & Manage

- **MONITOR**: Monitor GPU metrics
 - GPU slot utilization, temperature & status
 - Detect ECC error accumulation

```markdown
<table>
<thead>
<tr>
<th>Host Name: compute000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
</tr>
<tr>
<td>GPU ID</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
```
Scheduling to GPGPUs Today

- Managing latest GPGPUs and CUDA (V5.0) applications using:
 - IBM Platform LSF
 - IBM Platform HPC
 - IBM Platform Symphony

- GPU ELIM provides:
 - Monitoring and detection of GPUs
 - Group hosts with GPU(s) into a resource group
 - Compute slots on these hosts are user configured

- **GPU-enablement is the responsibility of the application developer**
USE CASES
Use Case #1: Simple Use Case

- Nvidia GPGPU only
- CUDA 5.0 and older
- Simple monitoring statistics
Use Case #2: Complex Use Case

- Multiple GPGPU / accelerators OR
- Use of newer CUDA features > 3.2 OR
- Monitoring of memory and GPU core utilization
Use Case #3: NUMA optimization within a single server
Use Case #3: NUMA Optimization within a single server

Asymmetric bandwidth requires:
- LSF: Non-GPU jobs to be scheduled to hosts without GPUs first
- LSF: Non-GPU jobs be scheduled to cores with low GPU bandwidth
- LSF: GPU jobs schedule to cores with maximum GPU bandwidth
Use Case #4: NUMA optimization for multi-server MPI jobs

MPI job optimization
– MPI selects optimal cores for multi-host job MPI processes
Use Case #4: NUMA Optimization for multi-server MPI jobs

MPI based multi-server GPU and non-GPU jobs

- LSF: Single servers – LSF scheduling plugin controls core placement
- LSF: Multiple servers – LSF scheduling plugin does nothing
- MPI: Single servers – MPI scheduler does nothing
- MPI: Multiple servers – LSF scheduling plugin controls core placement
SUMMARY
Reality and Conclusions

Don’t have application developed for GPUs?
- Many ISVs are working hard to adopt CUDA and/or openCL for their applications

IBM Platform Computing has available solutions for
- Managing both GPU and CPU resources in a cluster
- Monitoring & visualizing important parameters for GPUs
- Scheduling serial jobs to available and functional GPUs
- Scheduling parallel jobs to available and functional GPUs
- Scheduling & optimizing mixed mode serial and parallel workload
QUESTIONS?