KokkosArray: Multidimensional Arrays for Manycore Performance-portability

H. Carter Edwards, Christian Trott, Daniel Sunderland
Sandia National Laboratories

GPU TECHNOLOGY CONFERENCE 2013
MARCH 18-21, 2013 | SAN JOSE, CALIFORNIA

SAND2013-0692C (Unlimited Release)
Outline

• Part 1: KokkosArray Fundamental Concepts and API
 – Making is *look* easy for the user

• Part 2: Performance-Portability Evaluation
 – “Unit” tests and proxy-applications
 – Cray XK7 with NVIDIA Kepler
 – Intel Knights Corner cluster (pre-production hardware)

• Part 3: Porting MiniMD to KokkosArray
 – Evaluate new ideas and programming models before implementing within the production LAMMPS code
 – Variants for MPI+OpenMP, MPI+OpenCL and MPI+KokkosArray
Performance-Portability Challenge

Device-Dependent Memory Access Patterns

- Correctness: no race conditions
- Performance: proper placement, blocking, striding, ...
- CPUs with NUMA and vector units
 - Core-data affinity: first touch and consistent access
 - Alignment for cache-lines and vector units
- GPU Coalesced Access with cache-line alignment
- “Array of Structures” vs. “Structure of Arrays”?
 - This is, and has been, the wrong question

Right question: Abstractions for Performance-Portability?
Programming Model Concept

two foundational ideas

• Manycore Device
 – Separate memory spaces (physically or logically)
 – Dispatch **work** to device: computation + data

• Classic Multidimensional Arrays, *with a twist*
 – Map multi-index (i,j,k,...) ↔ memory location on the device
 – Efficient: computation and memory used
 – Map is derived from a **Layout**
 ➢ Choose Layout for device-specific memory access pattern
 – Make layout changes transparent to the user code;
 ➢ **IF** the user code honors the simple API: a(i,j,k,...)

Separate user’s index space from memory layout
KokkosArray Library
Just arrays and parallel dispatch

• Standard C++ Library, not a Language extension
 – In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...
 – Not a language extension: OpenMP, OpenACC, OpenCL, CUDA

• Uses C++ template meta-programming
 – Compile-time polymorphism for devices and array layouts
 – C++1998 standard; would be nice to require C++2011 ...

• KokkosArray is not:
 – A linear algebra library
 – A mesh or grid library
 – A discretization library

Intent: Build such libraries on top of KokkosArray
API : Allocation, Access, and Layout

• Basic : data allocation and access

 class View< double * * [3][8] , Device > a("a",N,M);

 • Dimension [N][M][3][8] ; two runtime, two compile-time
 • a(i,j,k,l) : access data via multi-index with device-specific map

• Same ‘View’ in both host and device code

• Access Safety
 • Compile-time assertion a(i,j,k,l) is used correctly
 • Assert device code accesses device memory
 • Assert host code accesses host memory
 • Runtime array bounds checking – in debug mode
 • Using Cuda ‘assert’ mechanism on the device
API : Allocation, Access, and Layout

- Advanced: specify array layout

  ```
  class View<double**[3][8], Layout, Device> a("a",N,M);
  ```
 - Override default layout; e.g., force row-major or column-major
 - Multi-index access is unchanged in user code
 - `Layout` is an extension point for blocking, tiling, etc.

- Advanced: specify memory access attributes

  ```
  class View<const double**[3][8], Device, RandomRead> x = a;
  ```
 - E.g., access ‘x’ data through GPU texture cache
API : View Semantics
(e.g., reference counting)

• Basic : view semantics

typedef class View<double**,Device> MyMatrixType ;
MyMatrixType a(“a”,N,M); // allocate array
MyMatrixType b = a ; // A new light-weight view to the same data

– Reference counting is internal to avoid cluttering user-code

• Advanced : turn off reference counting

class View<const double**,Layout,Device,Unmanaged> c = a ;

– Faster to construct, assign, and destroy; however,

 User-code assumes responsibility to destroy ‘c’ before ‘a’
– Can only allocate managed views
API : Deep Copy

NEVER have a hidden, expensive deep-copy

• Only deep-copy when explicitly instructed by user code

• Basic : mirror the layout in Host memory space
 ➢ Avoid transpose or permutation of data: simple, fast deep-copy

```cpp
typedef class View<...,Device> MyViewType;
MyViewType a("a",...);
MyViewType::HostMirror a_host = create_mirror( a );
depth_copy( a , a_host ); depth_copy( a_host , a );
```

• Advanced : avoid unnecessary deep-copy
  ```cpp
  MyViewType::HostMirror a_host = create_mirror_view( a );
  ```
 – If Device uses host memory then ‘a_host’ is simply a view of ‘a’
 – deep_copy becomes a no-op
Functor : Function + its calling arguments

template< class DeviceType > // allows for partial-specialization
struct AXPY {
 void operator()(int iw) const { y(iw) += a * x(iw); } // shared function
 AXPY(...) ... { parallel_for(nwork , *this); } // parallel dispatch
 typedef DeviceType device_type ; // run on this device
 const double a ;
 const View<const double*,device_type> x ;
 const View< double*,device_type> y ;
};

- Functor is shared and called by NP threads (NP ≤ nwork)
- Thread parallel call to ‘operator()(iw)’ : iw ∈ [0,nwork)
- Access array data with ‘iw’ to avoid race conditions
Parallel Dispatch via Functor

• Thread-Memory Affinity → Data Access Pattern
 – Assume parallel work index is the array’s leading index
 – CPU : thread ↔ contiguous indices for NUMA
 – CPU : thread ↔ contiguous indices for vectorization
 – GPU : thread ↔ strided indices for coalesced access

• Why Functor Pattern?
 – Flexible: as many argument-members as you need

• Why not Function + Argument List?
 ➢ Requires language / compiler extensions
 – Impedes device-specific specializations
API: Parallel Dispatch

parallel_reduce(nwork, functor, result)

- Similar to parallel_for, with *Reduction Argument*

```c++
template< class DeviceType >
struct DOT {
    typedef DeviceType device_type;
    typedef double value_type;  // reduction value type

    DOT( ... ) ... {
        parallel_reduce( nwork, *this, result );
    }

    const View<const double*,device_type> x, y;
    // ... to be continued ...
};
```

- Value type can be a ‘struct’, static array, or dynamic array
- Result is a value or View to a value on the device
API : Parallel Dispatch
parallel_reduce(nwork , functor , result)

• Initialize and join threads’ individual contributions
 struct DOT { // ... continued ...
 static void init(value_type & contrib) { contrib = 0 ; }
 static void join(volatile value_type & contrib , const volatile value_type & input)
 { contrib = contrib + input ; }
 }

 – Join threads’ contrib via commutative Functor::join
 – ‘volatile’ to prevent compiler from optimizing away the join

• Deterministic result ← highly desirable
 – Given the same device and # threads
 – Aligned memory prevents variations from vectorization
Not Discussed Today

- Hierarchical ThreadPool for NUMA, Intel-KNC
- Tiled Array Layouts
- Embedded Data Types
 - View< Type **[3][8], device >
 - Type can be automatic differentiation, stochastic bases,...
- Plans:
 - Abstracted interface for atomics
 - Blocked & variable blocked layouts
 - Hierarchical task parallelism
 - Task graph of data-parallel functors
 - Integration with task-scheduler (Qthreads)
Outline

• Part 1: KokkosArray Fundamental Concepts and API
 – Making is *look* easy for the user

• Part 2: Performance-Portability Evaluation
 – “Unit” tests and proxy-applications
 – Cray XK7 with NVIDIA Kepler
 – Intel Knights Corner (KNC): “Results are obtained on pre-production Intel Xeon Phi hardware, performance of final product versions may be different.”

• Part 3: Porting MiniMD to KokkosArray
 – Evaluate new ideas and programming models before implementing within the production LAMMPS code
 – Variants for MPI+OpenMP, MPI+OpenCL and MPI+KokkosArray
Performance-Portability Tests
same code compiled to devices *

• Modified Gram-Schmidt algorithm
 – Sequence of Level-1 BLAS: dot, scale, axpy
 – Limited by memory bandwidth and reduction synchronization

• Explicit dynamics proxy-application
 – Finite element stress and internal forces (computationally intense)
 – Assemble forces to vertices (random access), enforce boundary conditions, and integrate motion
 – “Halo exchange” communication of vertices’ motion

• Nonlinear thermal conduction proxy-application
 – Finite element residual & Jacobian assembled into sparse system
 – Newton iteration w/nested conjugate-gradient (CG) linear solve
 * On GPU using ‘cusparseDcsrmv’ within the CG solve
 – CG iterations have “halo exchange” communication
Performance-Portability Tests

• ‘Curie’ testbed at Sandia
 – Cray XK7 with 50 compute nodes:
 • AMD Opteron 6200 (2x8 cores)
 • NVIDIA K20X
 – GPU Direct capability not available

• ‘Compton’ testbed at Sandia
 – Intel Xeon Phi (MIC) co-processor cards: pre-production hardware
 – Cluster containing 64 Knights Corner (KNC) cards
 – Our KNCs: 57 cores x 4 hyperthreads (reserve one core for OS)
 – Hyperthreading necessary for latency hiding
 – Running in “KNC only” mode – direct inter-card communication
Modified Gram-Schmidt Performance
Limited by bandwidth and reductions

- Performance normalized by # devices
- Cray XK7 compute nodes
 - AMD Opteron 6200 (2x8 cores), ~51 GB/sec theoretical peak
 - NVIDIA K20X, ~250 GB/sec theoretical peak
- RW performance at “large enough” problem size
 - Opteron: achieved ~51% of peak
 - K20X: achieved ~65% of peak
Modified Gram-Schmidt Performance
On Knights Corner (pre-production)

• Hyperthreading
 • Threads-on-hyperthreads improves performance
 • MPI-on-hyperthreads degrades performance

• RW performance at “large enough” problem size
 – Performance normalized by device
 – ~200 GB/sec “achievable” peak (pre-production hardware)
 – Full threading utilization achieved ~23% of “achievable” peak
 – MPI-per-core achieved ~13% of “achievable” peak
Performance Evaluation: Explicit Dynamics ProxyApp

- Element computation time / element
 - High computational intensity (operations / memory access)
- Node update time / node
 - High random-memory-access intensity
 - Benefit from texture cache? – TBD
Performance Evaluation on KNC: Explicit Dynamics ProxyApp

- Computationally intense
 - and NO communication
- Hyperthreads:
 - 56x{1-4} MPI processes / card
 - 56x{1-4} Threads / card
- Threads consistently outperform MPI processes
 - Using more KNC cards only exacerbates this difference
Performance Evaluation on KNC: Explicit Dynamics ProxyApp

- Threads outperform MPI processes
 - Even with NO communication
- More MPI processes cause large slowdown
 - Processes on hyperthreads competing for memory
- More threads cause slight slowdown
 - Threads on hyperthreads *attempt* to cooperate for memory access
Performance Evaluation on KNC: Explicit Dynamics ProxyApp

- More MPI processes cause drastic slowdown
 - Does not scale!
- More threads cause slight slowdown
- Threads significantly outperform MPI processes
- Consider 512 KNC cards
 - 114,688 MPI ranks
 - 512 MPI ranks x 224 threads
Performance Evaluation on KNC: Nonlinear Thermal Conduction ProxyApp

- Nonlinear quadratic elem.
 - Compute contributions to residual and Jacobian
 - Computationally intensive
 - No communication

- Threads outperform MPI processes (again)
Performance Evaluation on KNC: Nonlinear Thermal Conduction ProxyApp

- Hyperthreads share core’s L1 cache: NUMA-like effect
 - Sparse mat-vec and matrix-assembly have random access
 - Domain decomposition improves cache utilization for MPI
 - Threads needed a similar domain decomposition / ordering
Performance Evaluation: Nonlinear Thermal Conduction ProxyApp

- **Assembly Time per Row**
 - Gather-assemble data from element array, low comp. intensity

- **CG Time / Iteration / Row**
 - Dominated by data movement: sparse-matrix-vector multiply gathers vector data inter/intra process (need GPU-direct!)
Performance-Portability Tests

Conclusions

• Performance-portable “unit” tests

• Portable non-trivial proxy-application source code
 – CPU-threaded, GPU, and KNC-threaded
 – Explicit dynamics and nonlinear thermal conduction FEM

• Performance – Intel Phi
 – Compiler does vectorize through KokkosArray API
 – Must use MPI+thread hybrid parallelism (MPI-only will not work)
 – Domain decomposition ordering needed to improve cache utilization

• Performance - GPU
 – Proper coalesced memory access
 – Need GPU direct to reduce inter-node communication
 – Need access to GPU texture cache via portable API

 • In progress
• Part 1: KokkosArray Fundamental Concepts and API
 – Making is look easy for the user

• Part 2: Performance-Portability Evaluation
 – “Unit” tests and proxy-applications
 – Cray XK7 with NVIDIA Kepler
 – Intel Knights Corner cluster (pre-production hardware)

• Part 3: Porting MiniMD to KokkosArray
 – Evaluate new ideas and programming models before implementing within the production LAMMPS code
 – Variants for MPI+OpenMP, MPI+OpenCL and MPI+KokkosArray
MiniMD: A mini-app for LAMMPS
(lammps.sandia.gov)

• Evaluate new ideas and programming models before implementing within the production LAMMPS code
 – Variants for MPI+OpenMP, MPI+OpenCL and MPI+KokkosArray

• Part of Mantevo Suite (mantevo.org)

• 4k lines of code split into classes:
 – Integrate: main integration loop
 – Force{_LJ/_EAM}: actual force calculation
 – Neighbor: neighbor list construction
 – Comm: communication between MPI process
 – Thermo: calculates thermo dynamic output
Molecular Dynamics

- Solve Newton’s equations for N particles
- Force calculation with simple Lennard Jones model:
 \[F_i = \sum_{j, r_{ij} < r_{cut}} 6 \varepsilon \left(\frac{\sigma}{r_{ij}} \right)^7 - 2 \left(\frac{\sigma}{r_{ij}} \right)^{13} \]
- Loop over particles’ NeighborLists to avoid N^2 computations
  ```
  pos_i = pos[i];
  for( jj = 0; jj < num_neigh[i]; jj++) {
    j = neighs[i][jj];
    r_ij = pos_i – pos[j]; //random read 3 floats
    if ( |r_ij| < r_cut )
      f_i += 6*e*( (s/r_ij)^7 – 2*(s/r_ij)^13 )
  }
  f[i] = f_i;
  ```
- Typically: $N = 100k$ / compute-node; #Neighbors = 40
- Sparse memory access moderately compute bound
Data Management

• Data types:

```cpp
typedef View<double*[3],LayoutRight,Device> tvector_2d;
typedef tvector_2d::HostMirror tvector_2d_host;
typedef View<double*[3],LayoutRight,Device,RandomRead> tvector_2d_rnd; //On GPU use Texture cache
```

• Atom::growarray() --- reallocation function

```cpp```
x = (double**) realloc_2d_double_array(x,nmax,3,3*nold);
```
Replaced by:

```cpp```
tvector_2d xnew("X",nmax); // allocate new array
deep_copy_grow(xnew,x); // copy old to new
x = xnew; // automatically delete
h_x = KokkosArray::create_mirror_view(x); // create host copy
```

• Atom::upload() / download() --- transfer data between host and device

```cpp```
KokkosArray::deep_copy(x,h_x);
KokkosArray::deep_copy(h_x,x);
```
– No-op if h_x and x are the same
Integration (i) – a simple kernel’s API

- Split function looping over variables into: (i) loop body function, (ii) functor calling loop body function, (iii) function submitting functor

```cpp
class Integrate {
public:
    // ...
    void initialIntegrate();
    // ...
private:
    double **x, **v, **f;
    int nlocal;
};

class Integrate {
public:
    // ...
    void initialIntegrate();
    // ...
private:
    tvector_2d x, v, f;
    int nlocal;
    KOKKOSARRAY_INLINE_FUNCTION
    void initialIntegrateItem(int &i) const;
    friend class InitialIntegrateFunctor;
};

struct InitialIntegrateFunctor {
    Integrate c; // Copy of Integrate object
    KOKKOSARRAY_INLINE_FUNCTION
    void operator()(const int i) const
    {
        c.initialIntegrateItem(i);
    }
};
```

- Change pointers to Views
- Split out per-item loop body
- Create functor-wrapper
Integration (ii) –
a simple kernel’s loop body

• Split function looping over variables into: (i) loop body function, (ii) functor calling loop body function, (iii) function submitting functor

```cpp
void Integrate::initialIntegrate()
{
  #pragma omp for
  for(MMD_int i = 0; i < nlocal; i++) {
    v[i*3 + 0] += dtforce * f[i*3 + 0];
    v[i*3 + 1] += dtforce * f[i*3 + 1];
    v[i*3 + 2] += dtforce * f[i*3 + 2];
    x[i*3 + 0] += dt * v[i*3 + 0];
    x[i*3 + 1] += dt * v[i*3 + 1];
    x[i*3 + 2] += dt * v[i*3 + 2];
  }
}
```
Force Calculation with Conditional Reduction (i)

- Optional energy calculation with force calculation

```cpp
void ForceLJ::compute_fullneigh() { // Original kernel
    for (int i = 0; i < nlocal; i++) {
        const double xtmp = x[i][0], ytmp = x[i][1], ztmp = x[i][2];
        double fix = 0, fiy = 0, fiz = 0;
        for (int k = 0; k < numneigh[i]; k++) {
            const int j = neighbors[i][k];
            const double dx = xtmp - x[j][0], dy = ytmp - x[j][1], dz = ztmp - x[j][2];
            const double rsq = dx*dx + dy*dy + dz*dz;
            if (rsq < cutforcesq) {
                const double sr2 = 1.0/rsq;
                const double sr6 = sr2*sr2*sr2;
                const double force = sr6*(sr6-0.5)*sr2;
                fix += dx*force; fiy += dy*force; fiz += dz*force;
                if (evflag) energy += sr6*(sr6-1.0); // conditional reduction
            }
        }
        f[i][0] += fix; f[i][1] += fiy; f[i][2] += fiz;
    }
}
```
Force Calculation with Conditional Reduction (ii)

• New function for inner loop

```cpp
template< int EVFLAG >
double ForceLJ::compute_fullneighItem(int &i) const {
    const double xtmp = x(i,0) , ytmp = x(i,1) , ztmp = x(i,2);
    double fix = 0 , fiy = 0 , fiz = 0;
    double energy = 0 ;
    for (int k = 0; k < numneigh[i]; k++) {
        const int j = neighbors(i,k);
        const double dx = xtmp-x(j,0), dy = ytmp-x(j,1), dz = ztmp-x(j,2);
        const double rsq = dx*dx + dy*dy + dz*dz;
        if (rsq < cutforcesq) {
            const double sr2 = 1.0/rsq;
            const double sr6 = sr2*sr2*sr2;
            const double force = sr6*(sr6-0.5)*sr2;
            fix += dx*force; fiy += dy*force; fiz += dz*force;
            if( EVFLAG ) energy += sr6*(sr6-1.0); //conditional reduction
        }
        f(i,0) += fix;  f(i,1) += fiy;  f(i,2) += fiz;
    }
    return energy ;
}
```

On GPU: Texture Fetch
struct ForceComputeFullneighFunctor { // Functor wrapper
typedef double value_type;
ForceLJ c; // Wrapped force computation class

KOKKOSARRAY_INLINE_FUNCTION
void operator()(int i) const { c.compute_fullneighItem<0>(i); }

KOKKOSARRAY_INLINE_FUNCTION
void operator()(int i, value_type & energy) const
{ energy += c.compute_fullneighItem<1>(i); }

KOKKOSARRAY_INLINE_FUNCTION static void init(...);
KOKKOSARRAY_INLINE_FUNCTION static void join(...);
};

void ForceLJ::compute_fullneigh(Atom &atom, Neighbor &neighbor, int me)
{
f_compute_fullneigh->c = *this;

if(evflag) energy = parallel_reduce(nlocal, *f_compute_fullneigh);
else parallel_for(nlocal, *f_compute_fullneigh);
}
Neighborlist Build
Specialized Algorithm for Cuda

```cpp
struct NeighborBuildFunctor {
    Neighbor c;
    
    KOKKOSARRAY_INLINE_FUNCTION void operator()(const int i) const {
        #if defined(__CUDA_ARCH__)
            c.build_ItemCuda(i);
        #else
            c.build_Item(i);
        #endif
    }
};

#if defined(__CUDA_ARCH__)
    extern __shared__ double sharedmem[];
#endif

__device__ inline void Neighbor::build_ItemCuda(const int & ii) const {
    int ibin = blockIdx.x * blockDim.y + threadIdx.y;
    double* other_x = sharedmem;
    int* other_id = (int*) &other_x[3 * blockDim.x];

    int bc = bincount[ibin];
    int i = threadIdx.x < bc ? bins[ibin * atoms_per_bin + threadIdx.x] : -1;
    double xtmp = x(i, 0);
    other_x[threadIdx.x] = xtmp;
    ....
}
```

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
- **SB**: Intel dual Sandy Bridge E5-2670
- **MIC**: KNC with 57 Cores
Normalized Performance
16 nodes (node = 2x8cSB; 1xKNC; 1xK20)

atomsteps / (s*node)

70 M
60 M
50 M
40 M
30 M
20 M
10 M
0

of atoms/node

256 1 k 4 k 16 k 66 k 262 k 1 M 4 M 17 M

SB (E5-2670, 8c/16HT, 2.6GHz)
KNC (57c/228HT)
K20x

On KNC MPI comm extremely slow
fix expected soon
MiniMD
Experience Porting to KokkosArray

• MiniMD is Performance Portable with KokkosArray
 – Equivalent performance to CUDA version
 – Better than OpenMP implementation
 – < 10% performance loss vs. MPI version without threading

• Code complexity slightly increased vs MPI+OpenMP
 – Much less complex than OpenCL or CUDA implementation

• More future-proof than other programming models
 – New device backends through KokkosArray, not production code
 – Simple to change data layout without rewriting production code

• Not presented:
 – Out-of-bounds checking with traceback – in debug build
• KokkosArray available: trilinos.org

• MiniMD available: mantevo.org

• Contacts:
 – Carter Edwards: hcedwar at sandia.gov
 – Christian Trott: crtrott at sandia.gov