NVIDIA indeX™ - Leveraging GPU Compute for Interactive Large-scale Data Visualization

Marc Nienhaus, Jörg Mensmann, Stefan Radig, Tom-Michael Thamm
NVIDIA indeX - Scalable Large-Scale Data Visualization at Interactive Frame Rates

- Distributed rendering on GPU clusters
 - Supports today’s and tomorrow’s large-scale data

- Rendering performance
 - 260 GB seismic volume
 - 14 cluster nodes
 - 4 Tesla K10 per machine
 - 13 frames per second
Visual Quality and Accuracy

- Visualization at original data resolution
- Depth-correct rendering of transparent geometry
 - Example: triangle geometry embedded into volume data
Sort-Last Approach for Scalable Rendering

- Object-space subdivision of large-scale data into smaller subcubes
- Parallel, distributed rendering on GPU cluster
Distributed Rendering Process
Performance and Scalability

Dataset
- 80 GB volume, top view

Cluster
- 4 Tesla K10 per cluster machine
NVIDIA indeX - Software Architecture

- **Extensibility**
 - User-defined components
 - Intellectual property separation

- **NVIDIA DiCE**
 - Platform for writing parallelized and distributed high-performance computing applications
 - Provides networking infrastructure (UDP, TCP, InfiniBand, RDMA)
 - Scales to large cluster sizes (GPU/CPU)
 - Next talk in this session
Interactive Attribute Generation for Instantaneous Visualization

▪ Applications
 – Weather simulations for atmospheric dynamics visualization
 – Seismic attribute generation for survey visualization

▪ Requirements
 – Raw n-dimensional data is huge compared to generated attributes
 – Process raw data using user-defined compute algorithms
 ▪ Plethora of possible attribute types
 ▪ Must support algorithm-specific data subdivision schemes
 – Interactive parameterization with instantaneous updates
Proxy Shapes for Attribute Generation

- Proxy shapes
 - Slices
 - Triangle surfaces
 - Volumes

- Part of the scene description

- Canvas for attribute visualization
Interface for Attribute Generation

- **User-defined attribute computation**
 - Compute jobs launched per subcube
 - Receives proxy shape intersection
 - May use algorithm-specific subdivision scheme
 - Returns attributes

- **Computed attributes are mapped when rendering proxy shapes**
 - Analogy: procedural texturing
Attribute Data Generation Process and Visualization
GPU Clusters for Combined Compute and Rendering Cycles

- Asynchronous compute maximizes performance
 - Rendering and compute process run in parallel
 - Results integrated into rendering as they become available
Additional Benefits

- Remote visualization
 - H.264 video encoding
 - Hardware-accelerated on Kepler
- Private and public clouds
 - Web-based applications
 - Thin clients (tablets)
- Multi-user support for world-wide collaboration
Demo

- GPU cluster located in Berlin, Germany
 - 8 cluster nodes, each with 2 Tesla M2090
 - 82 GB volume
 - Seismic horizon with 250 million triangles
 - H.264 video streaming
Thank you...

Marc Nienhaus
NVIDIA indeX Engineering Manager
and Chief Architect

Jörg Mensmann
Sr. Graphics Software Engineer, NVIDIA indeX

Stefan Radig
Sr. Manager, DiCE development lead

Tom-Michael Thamm
Director Software Product Management
Product Manager NVIDIA indeX