Efficient Merge, Search, and Set Operations on GPU

Sean Baxter
Duane Merrill
NVIDIA Research
Merge-like Functions

- Merge and mergesort

- Vectorized searches - sorted needles in sorted haystack
 - lower_bound, upper_bound, equal_range, counts

- Sets (C++ multisets definition)
 - set_intersection, set_union, set_difference, set_symmetric_difference

- Joins (built on sorted searches)
 - Inner, left, right, full
 - Semi-join, anti-join
Merge-like Functions

- **Input**: two sorted sequences.
- **Output**: one sequence with sorted content.
- These problems aren’t *obviously* parallel.
Merge Definition

- A: 1^0 2^0 2^1 2^2 3^0 6^0 6^1 6^2 7^0 7^1 8^0 8^1
- B: 2^0 2^1 3^0 3^1 4^0 5^0 6^0 6^1 6^2 8^0 8^1 9^0

- Order inputs by key, then source (A or B), then rank.
 - Rank is handled by reading left-to-right.
 - This property necessary for stable merge and mergesort.

- 1_A^0 2_A^0 2_A^1 2_A^2 2_B^0 2_B^1 3_A^0 3_B^0 3_B^1 4_B^0 5_B^0 ...
Solving Merge

- Two-pass solution:
 1. **Parallel Partition**
 Map *exactly* the necessary inputs into each tile.
 2. **Serial Streaming**
 Process *exactly* the grain size of inputs per thread.
Merge Path

- Merge Path provides useful visualization and mental model for parallel partitioning

Binary search for intersection of cross-diagonals with Merge Path

Merge Path - Parallel Merging Made Simple (2012)
Sahe Odeh, Oded Green, Zahi Mwassi, Oz Shmueli, Yitzhak Birk

GPU Merge Path – A GPU Merging Algorithm (2012)
Oded Green, Robert McColl, David A. Bader
Search input sequences for splitters A_d and B_d such that $A_d + B_d = d$

Intervals $(A_{\text{begin}}, B_{\text{begin}})$ to (A_d, B_d) may be merged; intervals (A_d, B_d) to $(A_{\text{end}}, B_{\text{end}})$ may be merged.

Don’t try ad-hoc binary search.
We have two arrays, but choose a coordinate system so that we only have one *search*.

- Use constraint to advantage:
 - \(A_d + B_d = d \) =>
 - \(A_i = i \)
 - \(B_i = d - i \)
 - Binary search over \(i \) (range \(i \) from 0 to \(d \))

- Each CTA has 2 partitions: *begin* and *end* for defining interval to load. Load exactly enough data to merge CTASize elements.
// Use constraints to transform from array to cross-diagonal
// coordinates
int begin = max(0, diag - bCount);
int end = min(diag, aCount);

// Binary search in cross-diagonal coordinates
while(begin < end) {
 int mid = (begin + end) / 2;
 int aIndex = mid;
 int bIndex = diag - mid - 1;
 // p = aData[aIndex] <= bData[bIndex]
 // For std::merge-like semantics
 bool p = !comp(bData[bIndex], aData[aIndex]);
 if(p) begin = mid + 1;
 else end = mid;
}

// Transform back into array coordinates.
// As required, aIndex + bIndex == diag.
int aIndex = begin;
int bIndex = diag - begin;
Serial Work

- Binary search partitioning must be done to locate the starting point for each thread.

- Serial merge/search/set functions do all actual work.

- Serial routines have $O(n)$ complexity (better than $O(n \log n)$ for most parallel operations).
Serial Merge

#pragma unroll
for(int i = 0; i < Count; ++i) {
 T x1 = keys[aBegin];
 T x2 = keys[bBegin];

 // If p is true, emit from A, otherwise emit from B.
 bool p;
 if(bBegin >= bEnd) p = true;
 else if(aBegin >= aEnd) p = false;
 else p = !comp(x2, x1); // p = x1 <= x2

 // because of #pragma unroll, merged[i] is static indexing
 // so merged is kept in RF, not smem!
 merged[i] = p ? x1 : x2;
 if(p) ++aBegin;
 else ++bBegin;
}

Parallel sets

- A: $1^0 \ 2^0 \ 2^1 \ 2^2 \ 3^0 \ 6^0 \ 6^1 \ 6^2 \ 7^0 \ 7^1 \ 8^0 \ 8^1$
- B: $2^0 \ 2^1 \ 3^0 \ 3^1 \ 4^0 \ 5^0 \ 6^0 \ 6^1 \ 6^2 \ 8^0 \ 8^1 \ 9^0$

- **C++ implements multisets:**
 - Match elements in A and B with equal key and rank
 - A: $1^0 \ 2^0 \ 2^1 \ 2^2 \ 3^0 \ 6^0 \ 6^1 \ 6^2 \ 7^0 \ 7^1 \ 8^0 \ 8^1$
 - B: $2^0 \ 2^1 \ 3^0 \ 3^1 \ 4^0 \ 5^0 \ 6^0 \ 6^1 \ 6^2 \ 8^0 \ 8^1 \ 9^0$

- **C++ implements 4 multiset operations.**
Parallel sets

- **std::set_intersection**
 - Emit A’s element if key+rank match with B:
 - A: 1 2 2 3 6 6 6 7 7 8 8
 - B: 2 2 3 3 4 5 6 6 6 8 9

- **std::set_union**
 - Emit A or B element unless key+rank match, then only emit A and advance past B:
 - A: 1 2 2 3 6 6 6 7 7 8 8
 - B: 2 2 3 3 4 5 6 6 6 8 9
Parallel sets

- **std::set_difference**
 - Emit A’s element if no key+rank match with B.

 - A: $1^0 2^0 2^1 2^2 3^0 \quad 6^0 6^1 6^2 7^0 7^1 8^0 8^1$
 - B: $2^0 2^1 \quad 3^0 3^1 4^0 5^0 6^0 6^1 6^2 \quad 8^0 8^1 9^0$

- **std::set_symmetric_difference**
 - Emit A’s element if no key+rank match with B, and emit B’s element if no key+rank match with A.

 - A: $1^0 2^0 2^1 2^2 3^0 \quad 6^0 6^1 6^2 7^0 7^1 8^0 8^1$
 - B: $2^0 2^1 \quad 3^0 3^1 4^0 5^0 6^0 6^1 6^2 \quad 8^0 8^1 9^0$
Sets Workflow

1. Partition Kernel
 - Run global Balanced Path on inputs to exactly partition over tiles.

2. Set Op Kernel
 - Load input intervals into each tile.
 - Run Balanced Path on tile data in shared memory.
 - Execute work-efficient serial multiset operations.
 - Compact outputs across threads in CTA using bitfield.

3. Compact Kernel
 - Globally compact outputs.
Balanced Path

We introduce Balanced Path for multiset partitioning.

Merge Path – A before B

Balanced Path – balance by rank
Balanced Path

Balanced Path has a ‘stair-step’ shape, following equal key-rank occurrences in A and B.

- First run Merge Path to identify the key.
- Next binary search both A and B to find the first occurrence of that key in each input array.
- Forward project to include an equal number of duplicates from each input array to the left of the cross-diagonal.
Balanced Path

```c
int p = MergePath(a, aCount, b, bCount, diag);
int aIndex = p;
int bIndex = diag - p;

// A ‘starred’ Balanced Path means we steal one element
// from B to match its corresponding key-rank item in A.
// There are diag + (int)star elements to the left of the partition.
bool star = false;
if(bIndex < bCount) {
    T x = b[bIndex]; // Search for start of x duplicates in A and B.
    int aStart = LowerBound(a, aIndex, x);
    int bStart = LowerBound(b, bIndex, x);

    int aRun = aIndex - aStart;
    int bRun = bIndex - bStart;
    int xCount = aRun + bRun;
```
Balanced Path

// Attempt to advance b and regress a.
int bAdvance = max(xCount / 2, xCount - aRun);
int bEnd = min(bCount, bStart + bAdvance + 1);
int bRunEnd = UpperBound(b + bIndex, bEnd - bIndex, x) + bIndex;
bRun = bRunEnd - bStart;
bAdvance = min(bAdvance, bRun);
int aAdvance = xCount - bAdvance;

// If we’re adding an odd number of duplicates, and there’s another
// duplicate in B, star the search to pair it with the last included
// duplicate in A.
bool roundUp = (aAdvance == bAdvance + 1) && (bAdvance < bRun);
aIndex = aStart + aAdvance;
if(roundUp) star = true;
}
return (aIndex, star);
Results

Single-threaded C++ STL functions
2.8GHz Sandy i7

Merge: 191M/s
Int: 195M/s
Union: 195M/s
Diff: 190M/s
Sym Diff: 199M/s

GPU Merge is 75x faster than single CPU thread.
GPU Sets are 35x-47x faster than single CPU thread.
Tuning Pattern

- Balanced Path for partitioning is run once per thread, no matter grain size.
- Amortize partitioning cost by increasing grain size (do more work per search)
- Bigger grain size = more smem usage.
- More smem = lower occupancy.
- Lower occupancy = worse performance.

- Autotune for good performance based on device, datatype, distribution, and input sizes.
Questions?

- sbaxter@nvidia.com
- dumerrill@nvidia.com

- (Merge Path merge and Balanced Path set operations already in CUDA thrust 1.7)
Optimizing Shared Memory

- Principles for all merge-like functions:

- Store values in shared memory - this is exact fit thanks to Merge Path/Balanced Path partitioning.
- Use #pragma unroll to merge from shared memory (we need gather) into register.
- __syncthreads then store back all results.

- Only need space to store elements once in shared memory.
Serial set_symmetric_difference

Each iteration emits 0 or 1 outputs. Static indexing requires building bitfield of valid outputs and then compacting with scan.

// For simplicity, assume we’re not at end of array.
int available = 0; // bitfield indicating which outputs are valid.
#pragma unroll
for(int i = 0; i < Count; ++i) {
 // NOTE: continue; if already advanced Count pointers.
 T aKey = data[aBegin];
 T bKey = data[bBegin];
 bool pA = comp(aKey, bKey); // aKey < bKey
 bool pB = comp(bKey, aKey); // bKey < aKey
 results[i] = pA ? aKey : bKey;

 if(pA != pB) available |= 1 << i;
 if(!pA) ++aBegin;
 if(!pB) ++bBegin;
}
return available;