HYDRA:
A Hybrid CPU/GPU Speech Recognition Engine for Real-Time LVCSR

Jungsuk Kim Jike Chong Ian Lane
Electrical and Computer Engineering
Carnegie Mellon University
Silicon Valley

March 21, 2013 @GTC2013
Overview

• Introduction
• Speech Recognition with Weighted Finite State Transducers (WFST)
• GPU-Accelerated Speech Recognition
• On-The-Fly Hypothesis Rescoring
• Evaluation Results
• Demonstration Video
Introduction

• Voice interfaces a core technology for User Interaction
 • Mobile devices, Smart TVs, In-Vehicle Systems, …

• For a captivating User Experience, Voice UI must be:
 • Robust
 • Acoustic robustness → Large Acoustic Models
 • Linguistics robustness → Large Vocabulary Recognition
 • Responsive
 • Low latency → Faster than real-time search
 • Adaptive
 • User and Task adaptation

A New Speech Recognition Architecture Required
Introduction

Speech recognition contains many highly parallel tasks + GPU processors optimized for parallel computing = HYDRA an ASR engine designed specifically for GPUs
Speech Recognition with Weighted Finite State Transducers (WFSTs)

A search space in speech recognition is represented as a WFST graph that includes acoustic, phonetic and linguistic constraints.
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Search is performed in 3 phases
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Phase 0: Prepare Active Set
Gather active states (speech recognition hypotheses) from previous frame.
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Phase 1: Compute Observation Probability
Compute likelihood of phonetic models (Gaussian Mixture Model) for current frame
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Phase 2: WFST Search
Frame synchronous Viterbi search is performed on WFST network
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Phase 0: Prepare Active Set
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Phase 1: Compute Observation Probability
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Phase 2: WFST Search
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Phase 0: Prepare Active Set
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Phase 1: Compute Observation Probability
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Phase 2: WFST Search
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Phase 0: Prepare Active Set

Speech

Beach

Nice

Recognize

r eh k

a

ax

g

n

ay

z

s

p

iy

ch

r eh k

a

n

ay

s

b

iy

ch
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Phase 1: Compute Observation Probability
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Backtrack from Viterbi Search is Speech Recognition Hypothesis
Speech Recognition with Weighted Finite State Transducers (WFSTs)

Decoding Process

- **Phase 0: Prepare Active Set**
 - Gather active speech recognition hypotheses from previous frame.

- **Phase 1: Compute Observation Probability**
 - Compute likelihood of phonetic models (Gaussian Mixture Model) for current input features.

- **Phase 2: WFST Search**
 - Frame synchronous Viterbi search is performed on WFST network.
Concurrency Opportunities

- **Phase 0: Prepare Active Set**
 - *Communication-intensive phase*

- **Phase 1: Compute Observation Probability**
 - 1000~2000 GMM clusters are activated per step.
 - *Computation-intensive phase*

- **Phase 2: WFST Search**
 - 10,000s partial hypotheses tracked per step.
 - Handling *irregular graph structure* with data parallel operation.
 - *Conflict-free reduction* in graph traversal to resolve write-conflict.
 - *Communication-intensive phase*
GPU-Accelerated Speech Recognition

Approach 1:
- Conduct compute intensive phase only on GPU
- Incurs high data-copying overheads between the CPU and the GPU.
- Less scalable as transfer become a sequential bottleneck in algorithm.

Faster than CPU but less scalable
GPU-Accelerated Speech Recognition

Approach 2:

- Both phases are on GPU.
- Scalable algorithm
- Only suitable for small models (vocab / linguistic context) due to limited GPU memory (1~6GB)

Fast and Scalable but Limited
GPP-Accelerated Speech Recognition

Paul R. Dixon [ICASSP 2009]

Jike Chong [INTERSPEECH 2009]

Proposed

On-The-Fly Rescoring (LM Lookup)
GPU-Accelerated Speech Recognition

Proposed Approach:
- Both phases are on GPU using unigram WFST
- Rescore hypothesis “On-The-Fly” using larger language model on CPU

<table>
<thead>
<tr>
<th>Vocab. size</th>
<th>5k</th>
<th>64k</th>
<th>1M</th>
</tr>
</thead>
<tbody>
<tr>
<td>unigram</td>
<td>2</td>
<td>12</td>
<td>92</td>
</tr>
<tr>
<td>bigram</td>
<td>114</td>
<td>1,880</td>
<td>N/A*</td>
</tr>
<tr>
<td>trigram</td>
<td>676</td>
<td>4,644*</td>
<td>N/A*</td>
</tr>
</tbody>
</table>

WFST network size (MB) (* Unable to decode)

Fast, Scalable, Large Models
On-The-Fly Hypothesis Rescoring

At word boundary update graph weight with linguistic context from CPU
On-The-Fly Hypothesis Rescoring

At word boundary update graph weight with linguistic context from CPU

P(Speech|<s>,Recognize)
Evaluation Results *(5k vocab.)*

- **20X speed-up** compared to standard WFST decoding on CPU at word accuracy 93.80%
- **95.4%** maximum accuracy is achieved
Evaluation Results \(1M\) \textit{vocab.}

- \textbf{2.74X} faster than real-time when the WER is \textbf{9.35\%}
Evaluation Results \((1M \ vocab.)\)

- **2.74X** faster than real-time when the WER is **9.35%**
- **10X** faster than CPU decoder.
Thank you for your attention.