

Domain Specific Languages for Financial Payoffs

Matthew Leslie
Bank of America Merrill Lynch

Outline

● Introduction
– What, How, and Why do we use DSLs in Finance?

● Implementation
– Interpreting, Compiling

● Performance
– Parallelism

– How Fast Can It Be?

– What Optimisations Are Important?

Financial Payoffs

– Pay a certain amount on a certain date.

– Pay if a stock price is above a certain level on a certain date.

– Pay if the average performance of a basket of stocks remains above a
certain level over a certain period.

How do we describe them

● Imperative
– If(Spot[Expiry]>Barrier,1,0)

– HitDate=FindFirst(Spot[start..end]>Barrier)

● Declarative
– When (at Expiry) (Spot-Strike or 0)

Imperative Descriptions

Basic Language Constructs

Get a Simulated Asset Price

Record A Payment

Add,Sub,Div,Mul,Exp,Log

Min,Max,Avg

Conditionals

Loops

Assignments

● Arrays
– Of stock prices and dates

● Input Parameters
– Expiry Date

– Strike

– Basket Constituents

 Simple Payoff Examples

● Asian Call Option
– Max(Avg(Spot(1:n) / Spot[0] - strike ,0)

● Cliquet
– Sum(Max(Spot(1:n) / Spot(0:n-1) – strike ,0))

● Capped Floored Cliquet
– Max(Sum(Max(Min(Returns(Spots(0:n)), loc_cap), loc_floor)),

glob_floor)

How do we use the description?

● Estimate the fair value of a contract

– Monte Carlo Models

– PDE Models

– Tree Models

Monte Carlo

● For (instrument in portfolio)
● For (scenario...)

● For(path...)
– Generate random numbers
– Use model to generate asset paths

–Calculate value of payoff

● Order of 10,000,000,000 times in valuing a portfolio
● Payoff calculation can dominate execution time.

Workload by Payoff

Payoff1 Payoff2 Payoff3
Payoff4 Payoff5 Payoff6
Payoff7 Payoff8 Payoff9
Payoff10 >50 Others

● Payoffs are Parametrised
● Small number of payoffs are very common
● Long tail of uncommon payoffs

Outline

● Introduction
– What, How, and Why do we use DSLs in Finance?

● Implementation
– Interpreting, Compiling

● Optimisations
– Parallelism

– How Fast Can It Be?

– What Optimisations Are Important?

How can we execute them

● Parse Payoff
– Generate an Abstract Syntax Tree

● Interpret Payoff
– Software controlled execution

– Works best with fewer, slower instructions

● Compile Payoff
– Hardware controlled execution

Interpreters and Compilers

Interpreter Compiler
0

50

100

150

200

Payoff
Compile
Model

Interpreters on GPU

● Interpreter on CPU, launch kernels on GPU
– Memory Overhead Of Interpreter

– Flush intermediate values to global memory from registers

– Divergence Management

● Interpreter can run on GPU
– Interpreter state needs to be on GPU

– A memory overhead in storing the interpreter state

Compiling The Payff

● Somehow compile a function on the GPU which meets a specific API
– Takes a description of how many paths there are

– How they are laid out in memory

– Where to write output (payment data)

● Have your MC framework call that function
– Typically with a large number of paths

– Possibly many scenarios

JIT compilers

● A JIT compiler gives you runtime information:
– Numbers of Assets

– Numbers of Timesteps

● This lets you do
– In-lining of parameters

– Loop unrolling

– Memory Allocation

● This costs you
– Compilation Time

Speed and Latency

CPU GPU
0

10

20

30

40

50

60

Payoff
Compile
Model

JIT Compilers for GPU

● Amdahl's Law
– Compilation is sequential

– JIT Compilation not a bottleneck on CPU

– JIT Compilation may limit GPU performance

● Caching Required
– Compiled Payoffs Must Be Reusable

– Compile-In Per-Instrument Constants ?

Compilation Methods

● Many different routes to compiled code
– CUDA

– NVVM

– PTX

– OpenCL

– Others

Compiling the Payoff for GPU

● Cross-compilation to CUDA C
– Compile with NVCC

– Produce a shared library object

– Dynamically Load and Execute

● Pros:
– Familiar language

– Good compiler

● Cons:
– Larger Compiler, Language and Libraries

– Slower Compilation

Compiling the Payoff for GPU

● Cross-compilation to OpenCL
– Similar effort to cross compilation to CUDA

● Pros:
– Relatively Readable Compiler Output

– Relatively Platform Portable

– No need to distribute compiler

● Cons:
– Slow Compilation

– Difficult to integrate with CUDA

Compiling the Payoff for GPU

● Compile to PTX
– PTX code can be translated by driver

● Pros:
– Fast Compilation

– No additional libraries or tools

● Cons:
– Hard to debug

– Built In Optimisation

Compiling the Payoff for GPU

● Compile to NVVM
● Pros:

– Good optimisation

– Good debugging tools

– Easy to adapt to CPU

– Very little to distribute

● Cons:
– Learning curve

NVVM

● NVVM was best option for us
– Existing Experience with

LLVM

– Ease of Adaptation to CPU

– Fast Compile Times

nvcc -ptx OpenCL LLVM
0

500

1000

1500

2000

2500

3000

How hard is it?

● LLVM does a lot of work for
you

● A compiler is still complex
● Less daunting than hand coding

payoffs?

18 Hand coded payoffs LLVM Compiler
0

1000

2000

3000

4000

5000

6000

Lines Of Code

Compiling the Payoff for GPU

● SPIR Khronos group
– An intermediate language for OpenCL

– LLVM based

– Not available yet

● HSAIL HSA foundation
– Another standard for GPU intermediate languages

– Also LLVM based

Compilation Strategy

● We know we are in an inner loop
– In-line everything

– Unroll all loops

● Use LLVM constants
– LLVM will pre-calculate constant expressions

– Move them outside of inner loop

● LLVM vector types
– Good for CPU performance

Compilation Is Still A Bottleneck!

Parse/Lex
High Level Opt
Generate IR
Optimise IR
Convert to PTX
Execute (100k
paths)

Outline

● Introduction
– What, How, and Why do we use DSLs in Finance?

● Implementation
– Interpreting, Compiling, and Parallelising

● Optimisations
– What Optimisations Are Important?

– How Fast Can It Be?

– Parallelism

Optimisations

● Optimisation For Free!
– LLVM includes configurable optimization passes

– NVVM include optimisations

– PTX is further optimised during compilation

● Your compiler can emit quite bad code...
– But not everything can be optimised for you

Performance of GPU Payoffs

● Easily Become Memory Bound
– CPU : Single Path fits in cache

– GPU : Thousands of Paths, cache ineffective

● Memory Usage Optimisation Effective
– Global Writes/Reads Cannot Be Eliminated Safely

– Avoiding reading or writing intermediate data

Example

Asian option on Worst-of-basket

WorstPerf=Avg(Min(Performance(x) for x in basket) for t in times)

Pay(Max(WorstPerf-Strike,0))

● Naive

Performance(x) for x in basket

1. Generates a list of length basket size

2. Writes to a temporary

3. Read temporary list and find Min

4. Minimum written to second list of length times

● Global Memory Read/Writes

Higher Order Functions

● Represent List Operations as Maps and Folds
● Fuse them!
● Fold(f(x,y),i,{a,b,c}) =

f(f(f(i,a),b),c)

● Min(Peformance(x) for x in basket) =
– Fold (Min(x,y) , inf, Map(Peformance(x),basket))

● Min(Peformance(x) for x in basket) =
– Fold(Min(Performance(x),Performance(y)), inf, basket)

How Fast Can It Be?

WorstPerf=Avg(Min(Performan
ce(x) for x in basket) for t in
times);

Pay(Max(WorstPerf-Strike,0))

__global__ void worstOfAsian(
 const PathReader* pathReader,
 const size_t nTimeSteps,
 const size_t nPaths,
 const size_t nEquityUnderlyings,
 const float strike,
 const PaymentWriter* paymentWriter)
 {

 const size_t iPath = threadidx.x + blockidx.x*blockdim.x;
 if (iPath>=nPaths) return;
 float average = 0;
 for (size_t iTime=0; iTime<nTimeSteps; ++iTime)
 {
 float worstPerf=1E36;
#pragma unroll 4
 for (size_t iAsset=0;iAsset<nEquityUnderlyings;++iAsset)
 {
 float myInitialSpot = pathReader->read(iAsset,iPath,0);
 float mySpot = pathReader->read(iAsset,iPath,iTime);
 float myPerf=mySpot/myInitialSpot;
 if (myPerf<worstPerf) worstPerf=myPerf;
 }
 average+=worstPerf;
 }
 average/=nTimeSteps;
 float payoff = max(average-strike,0.0f);
 paymentWriter->write(payoff);
 }

How Fast Can It Be?

Script (No Fusion) CUDA Template Script Compiler
0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

140,000,000
P

a
th

s
P

e
r

S
e

co
n

d

Scripting Difficulties

● Choose Appropriate FP Precision
– Single Precision Often, Not Always, Sufficient

– Allow Users To Specify Precision?

– Always Use Double Precision?

● Effective Use of Shared Memory
– Shared Memory can cache intermediate results

– Where this is useful and appropriate, it is a huge performance boost

Conclusion

● Scripting Languages Can Be Executed Efficently on GPU
● Interpreter Overhead is High
● JIT Script Compilation Can Be A Bottleneck

– Caching Is Essential

– Trade-off between speed and latency

● NVVM An Excellent Tool For Compiling Payoffs
● Higher Order Functions And Fusion Give Good Performance

