Floating-point Precision vs Performance Trade-offs

Wei-Fan Chiang

School of Computing, University of Utah
Problem Statement

- Accelerating computations using graphical processing units has made significant advances, finding applications in systems ranging from large-scale HPC systems to mobile platforms.

Photo Courtesy of Nvidia geforce.com, ORNL, Cray Inc., and Google Inc.
Problem Statement

- Performance increases must not come at the expense of precision!
Problem Statement

- We have evidence that this is happening!
 - We will present details pertaining to many important GPU primitives where this tradeoffs appears not to have been precisely characterized.
- State of the art: Tool support to make these tradeoffs to assist programmers writing specific applications lacking!
Different Connotations of Performance/Precision Tradeoffs

- **Performance**: Average elapsed time for typical inputs
- **Precision**: Numerical uncertainty of outputs (e.g., interval of uncertainty) relative to input uncertainty
- **Approaches to achieve this tradeoffs:**
 - Algorithms that terminate with coarse approximations (e.g., of iterations).
 - **Our main interest so far**: Algorithms that fundamentally rearrange the computations
 - e.g., reduce the number of operations
 - minimize synchronization.
 - change the divide-and-conquer schemes (e.g. like in CILK)
Different Connotations of Performance/Precision Tradeoffs

Balance

```
+   +   +   +
```

Imbalance

```
+   +   +   +
```
Different Connotations of Performance/Precision Tradeoffs

- Input 1: 1024-element 32-bit floating-point array. Each element is 0.1f.
 - The result computed in infinite precision is $0.1 \times 1024 = 102.4$.
- Input 2: 1024-element 32-bit floating-point array. 512 elements are 100.3f, and 512 elements are 0.3f.
 - Elements are randomly permuted.
 - The result computed in infinite precision is $(100.3 + 0.3) \times 512 = 51507.2$.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Input</th>
<th>Machine Result</th>
<th>Difference</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance</td>
<td>input 1</td>
<td>102.4000015259</td>
<td>1.5259 e-06</td>
<td>3.53 µs</td>
</tr>
<tr>
<td>Imbalance</td>
<td>input 1</td>
<td>102.3990097046</td>
<td>-9.9030 e-04</td>
<td>1.34 µs</td>
</tr>
<tr>
<td>Balance</td>
<td>input 2</td>
<td>51507.203125</td>
<td>0.003125</td>
<td>3.54 µs</td>
</tr>
<tr>
<td>Imbalance</td>
<td>input 2</td>
<td>51507.67578125</td>
<td>0.47578125</td>
<td>1.30 µs</td>
</tr>
</tbody>
</table>

- We only show two concrete inputs here. How about other inputs?
Goal of Our Work

- Short term goal: Provide tools to analyze precision/performance tradeoffs
- Longer term goal:
 - Evolve guidelines that help achieve these tradeoffs by construction.
 - Integrate tools into usable CUDA programming / verification flows.
 - Demonstrate on a wide variety of practical examples.
Basics of Floating-point Precision Analysis

Input I \xrightarrow{\text{Compute in infinite precision}} \text{Precise output } O_T

Program P \xrightarrow{\text{Compute in finite precision}} \text{Imprecise output } O_R

- Informal analysis does not suffice. Absolute and relative errors are used to indicate the degree of imprecision.
- Absolute (abs.) error of the program output is:
 \[O_R - O_T \]
- Relative (rel.) error of the program output is:
 \[(O_R - O_T)/O_T \]
Related Work: Precision Profiling for Sequential Programs

- Dynamic analysis v.s. Interval/affine arithmetic based analysis
- Dynamic analysis [Hollingsworth, 2011] [Benz and Hack, 2012]:
 - Using very wide floating-point numbers to approximate real (infinite precision) numbers.
 - Pros: Fast computation of abs. or rel. errors.
 - Pros: Detects catastrophic cancellation and points out the root-cause instruction(s).
 - Cons: Requires concrete inputs. Not a generic analysis.
Related Work: Precision Profiling for Sequential Programs

- Interval/affine arithmetic based analysis:
 - Supports assigning intervals (value ranges) as program inputs.
 - Executes each operator in interval/affine arithmetic.
 - Analyzes the worst-case abs. or rel. errors for outputs.
 - Pros: Generic analysis.
 - Cons: Over-approximation.

- Interval/affine arithmetic based analyzer:
Our work: Precision Profiling for CUDA Programs

- We currently focus on CUDA programs.
- We only focus on race-free programs.
- We do interval/affine arithmetic based analysis.
- We use Gappa as our back-end analyzer.
- We sequentialize CUDA programs.
- Race checking and program sequentialization is done by GKLEE [Li, 2012].
Our work: Precision Profiling for CUDA Programs

▶ Tool Flow:

- **CUDA Program**
- **Performance Profiler** (e.g., nvprof, Nsight)
- **Performance/Precision Tradeoff**
- **CUDA Numerical Precision Profiler**
 - **Sequential Scheduler**
 - **Code Transformer**
 - **Gappa**:
 - a precision checker/prover for sequential programs

- **Race checking**
- **Performance breakdown**
- **Precision breakdown**
Technical Details: Gappa

- Gappa is a saturation and interval arithmetic based numerical constraint prover.
- Gappa takes logic formulas as input.
- Gappa checks validity or solves input logic formulas.
- Gappa provides built-in IEEE-754 rounding functions for estimating rounding uncertainty.
Technical Details: Gappa

\[X \in [0, 1] \land Y \in [0, 1] \rightarrow (X + Y) \in [0, 1] \]

Gappa \rightarrow \text{Not Valid}

\[X \in [0, 1] \land Y \in [0, 1] \rightarrow (X + Y) \in ? \]

Gappa \rightarrow (X + Y) \in [0, 2]

\[X \in [0, 1] \land Y \in [0, 1] \rightarrow \text{rnd}_{32}(X + Y) - (X + Y) \in ? \]

Gappa \rightarrow \text{rnd}_{32}(X + Y) - (X + Y) \in [-1 \times 2^{-24}, 1 \times 2^{-24}] \]
Sequential C Program:
```
float a, Z;
a = W + X;
Z = a + Y;
check_abs_error(Z);
```

Logic Formula
```
Z_T = ((W + X) + Y) ∧
Z_R = rnd_{32}(rnd_{32}(W + X) + Y) ∧
W in [0, 1] ∧ X in [0, 1] ∧ Y in [0, 1]
→ (Z_R - Z_T) in ?
```

- Each variable \(Z\) for precision checking is represented by an expression tree.
- Expression tree is composed by inputs as leaves and operators as internal nodes.
- Each operator is treated as an uninterpreted function.
Technical Details: Sequentializing CUDA Programs

- GKLEE explores one canonical schedule to check data race for a CUDA program.
- We sequentialize the CUDA program by that canonical schedule.
Experimental Results

- We collect sets of GPU programs. Each set contains different implementations of the same computation.
 - Two implementations of reduction.
 - Two implementations of scan (prefix-sum).
- We assume that, by giving the same input to implementations in the same set, they are designed to generate the same output.
- We measure absolute error to on output to indicate floating-point imprecision.
- GPU: Nvidia GeForce GTX 480.
- We assign both 32-bit and 64-bit inputs in all our experiments.
Experimental Results: Reduction

Balance

- Balance reduction:
 - The reduce3 kernel in CUDA SDK 5.0.

- Imbalance reduction:
 - Implemented by atomicAdd operation. The atomicAdd for 64-bit floating-point number is implemented by atomicCAS.
Experimental Results: Reduction

- 32-bit Floating-point Number:
- Each element is assigned as [-100.0f, 100.0f] when measuring precision.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Array Size</th>
<th>Abs. Error</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance</td>
<td>512</td>
<td>[-0.0215, 0.0215]</td>
<td>3.43 μs</td>
</tr>
<tr>
<td>Imbalance</td>
<td>512</td>
<td>[-0.5767, 0.5767]</td>
<td>1.37 μs</td>
</tr>
<tr>
<td>Balance</td>
<td>1024</td>
<td>[-0.0508, 0.0508]</td>
<td>3.53 μs</td>
</tr>
<tr>
<td>Imbalance</td>
<td>1024</td>
<td>[-2.2994, 2.2994]</td>
<td>1.37 μs</td>
</tr>
<tr>
<td>Balance</td>
<td>2048</td>
<td>[-0.0977, 0.0977]</td>
<td>3.54 μs</td>
</tr>
<tr>
<td>Imbalance</td>
<td>2048</td>
<td>Timeout (10 hours)</td>
<td>1.38 μs</td>
</tr>
</tbody>
</table>
Experimental Results: Reduction

- 64-bit Floating-point Number:
- Each element is assigned as \([-100.0, 100.0]\) when measuring precision.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Array Size</th>
<th>Abs. Error</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance</td>
<td>512</td>
<td>([-4.0018 \times 10^{-11}, 4.0018 \times 10^{-11}])</td>
<td>3.65 (\mu s)</td>
</tr>
<tr>
<td>Imbalance</td>
<td>512</td>
<td>([-0.0020, 0.0020])</td>
<td>6.805 ms</td>
</tr>
<tr>
<td>Balance</td>
<td>1024</td>
<td>([-9.4587 \times 10^{-11}, 9.4587 \times 10^{-11}])</td>
<td>3.83 (\mu s)</td>
</tr>
<tr>
<td>Imbalance</td>
<td>1024</td>
<td>([-0.0039, 0.0039])</td>
<td>14.867 ms</td>
</tr>
<tr>
<td>Balance</td>
<td>2048</td>
<td>([-1.8190 \times 10^{-10}, 1.8190 \times 10^{-10}])</td>
<td>3.83 (\mu s)</td>
</tr>
<tr>
<td>Imbalance</td>
<td>2048</td>
<td>Timeout (10 hours)</td>
<td>30.5575 ms</td>
</tr>
</tbody>
</table>
Experimental Results: Scan

Naive scan

Work-efficient Scan

V.S.

-Origin from GPU Gem3. [Nguyen, 2007]
-Three scan implementations: naive, work-efficient, and work-efficient with zero bank conflict.
Experimental Results: Scan

- Each element is assigned as [-100.0, 100.0] when measuring precision.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Array Size</th>
<th>32-bit Precision</th>
<th>64-bit Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>512</td>
<td>[-0.0195, 0.0195]</td>
<td>[-3.6366e-11, 3.6366e-11]</td>
</tr>
<tr>
<td>Work-efficient</td>
<td>512</td>
<td>[-0.0322, 0.0322]</td>
<td>[-0.0019, 0.0019]</td>
</tr>
<tr>
<td>Work-efficient (bf-free)</td>
<td>512</td>
<td>[-0.0322, 0.0322]</td>
<td>[-0.0019, 0.0019]</td>
</tr>
<tr>
<td>Naive</td>
<td>1024</td>
<td>[-0.0449, 0.0449]</td>
<td>[-8.3652e-11, 8.3652e-11]</td>
</tr>
<tr>
<td>Work-efficient</td>
<td>1024</td>
<td>[-0.0703, 0.0703]</td>
<td>[-0.0039, 0.0039]</td>
</tr>
<tr>
<td>Work-efficient (bc-free)</td>
<td>1024</td>
<td>[-0.0703, 0.0703]</td>
<td>[-0.0039, 0.0039]</td>
</tr>
</tbody>
</table>
Limitations

- Scalability.
- Identify the core reason of imprecision.
Conclusions

- Performance increases must not come at the expense of precision!
- Our precision profiling tool helps identify the performance/precision tradeoffs for GPU programming.
Future Work

- Evolve guidelines that help achieve performance/precision tradeoffs by our profiling tool.
- Improve scalability of our profiling tool.
- Automatically identify the core reason of floating-point imprecision.
- Apply our precision profiler to practically CUDA library.
Thank you.
Questions?
Basics of Floating-point Precision Analysis

- IEEE-754 standard:
 - 32-bit floating-point number:
 - 1 bit 8 bit 23 bit
 - sign exponent mantissa
 - if $sign = 0$: $mantissa \times 2^{exponent−127}$
 - if $sign = 1$: $−1 \times mantissa \times 2^{exponent−127}$

- 64-bit floating-point number:
 - 1 bit 11 bit 52 bit
 - sign exponent mantissa
 - if $sign = 0$: $mantissa \times 2^{exponent−1023}$
 - if $sign = 1$: $−1 \times mantissa \times 2^{exponent−1023}$
Basics of Floating-point Precision Analysis

- Using abs. or rel. for measuring floating-point imprecision has some pros. and cons.
- Using absolute error:
 - Pros: Easy to understand/compute.
 - Cons: Sensitive to magnitude of operands.
- Using relative error:
 - Pros: Comparatively insensitive to magnitude of operands.
 - Cons: Non-intuitive.
 - Cons: Potential division by zero IF using interval/affine arithmetic, e.g.:

\[
X/Y. \quad -1 \leq Y \leq 1
\]
Basics of Floating-point Precision Analysis: Methods for Precision Estimation

- **Interval arithmetic**
 - Represents each value as a range and operates on ranges. Each range (interval) is represented by an upper and a lower bound.
 - Pros: Relatively simpler.
 - Cons: Often overly pessimistic.
 - X in $[-1, 1]$. $X - X = [-2, 2]$.

- **Affine arithmetic**
 - Similar to interval arithmetic. But represents each range by an polynomial.
 - Pros: Relatively less pessimistic.
 - Cons: More involved.
 - $X = X_0 + X_1 \cdot \epsilon_1$. $X - X = 0$.

Basics of Floating-point Precision Analysis

- IEEE-754/854 standard:
 - Each operator computes the result exactly (in infinite precision) then rounds.
 - For a binary operator \oplus and its two operands, op_1 and op_2, \oplus will compute the exact result, V_T, then round to the rounded result V_R.
 - The relationship between V_T and V_R is:

$$V_R = V_T \times (1 + \epsilon_M \times \alpha). \quad -1 \leq \alpha \leq 1$$

ϵ_M, machine epsilon, is a constant which only depends on the size of mantissa.