Multi-GPU Load Balancing for Simulation and Rendering

Yong Cao
Computer Science Department, Virginia Tech, USA
In-situ Visualization and Visual Analytics

- Instant **visualization** and interaction of **computing** tasks
- Applications:
 - Computational Fluid Dynamics
 - Seismic Propagation
 - Molecular Dynamics
 - Network Security Analysis
 - ...
In-situ Visualization and Visual Analytics

- Instant **visualization** and interaction of **computing** tasks
- Applications:
 - Computational Fluid Dynamics
 - Seismic Propagation
 - Molecular Dynamics
 - Network Security Analysis
 - ...
In-situ Visualization and Visual Analytics

- Instant **visualization** and interaction of **computing** tasks
- Applications:
Generalized Execution Loop

Execution:

Simulation

Rendering

Data write

Data read

Memory:
Generalized Execution Loop

Execution:

Task 1
Task 2

Data write
Data read

Memory:
Parallel Execution – Task Split

Problem: Task (Context) Switch

Processor 1: T1
Processor 2: T2

Data write
Memory:
Data read

• Disadvantage of context switch:
 - Overhead of another kernel launch
 - Flash of the cache lines
 - Disallow persistent threads
Parallel Execution: Pipelining

Processor 1:
- t
- $t+1$
- $…$

Processor 2:
- t
- $t+1$

Data write

Data read

Memory:

+ Simplified kernel for each GPU
+ Better share memory and cache usage
+ Persistent thread for distributed scheduling
Parallel Execution: Pipelining

Problem: bubble in the pipeline

Processor 1:
Processor 2:
Memory:

Task 1: t
Task 2: t+1

Data write

Data read
Multi-GPU Pipeline Architecture
Adaptive Load Balancing

Multi-GPU Array

FIFO Data Buffer

Full Buffer: Shift toward Rendering

Empty Buffer: Shift toward Simulation

Adaptive and Distributed Scheduling
Task Partition

- **Intra-frame partition**

- **Inter-frame partition**
Task Partition for Visual Simulation

- Simulation: Intra frame partition
- Rendering: Inter frame partition
Problem: Scheduling Algorithm

- **Performance Model:**

\[T_{i}^{task} = \psi_{i}^{task}(n, p_1, p_2, \ldots) \]

\(n \): The number of assigned GPUs.

- **Schedule to optimize:**

\[M_i = \text{argmin}_{M_i \in \{1, \ldots, N-1\}} (\|\psi_{i}^{sim}(M_i, p_1, p_2, \ldots) - \psi_{i}^{vis}(N - M_i, p'_1, p'_2, \ldots)\|) \]

\(M_i \): The number of assigned Simulation GPUs.
Case Study Application

- N-body Simulation with Ray-Traced rendering

- Performance model parameters:
 \[T_i^{task} = \psi_i^{task}(n, p_1, p_2, \ldots) \]
 - Simulation: number of iterations \((i)\)
 number of simulated bodies \((p)\)
 - Rendering: number of samples for super sampling \((s)\)

- Scheduling Optimization:
 \[M_t = f(i_t, s_t, p_t) \]
Static Load-Balancing

• Assumption: the performance parameters do NOT change at run-time.

\[M_t = f(i_t, s_t, p_t) \quad \rightarrow \quad M = f(i, s, p) \]

• Data driven modeling approach:
 – Sample the 3 dimensional \((i, s, p)\) as a rigid grid
 – Use tri-linear interpolation to get the result for the new inputs
Static Load-Balancing: Results

- Performance Parameter Sampling
 - 16 Samples, 80 iterations
 - 4 Samples, 80 iterations

- Load Balancing
Dynamic Load Balancing

• Assumption: Performance parameters change during the run-time.

\[
\psi_i^{\text{sim}}(M_i, p_1, p_2, \ldots) - \psi_i^{\text{vis}}(N - M_i, p'_1, p'_2, \ldots) \approx \phi(p)
\]

• Find the indirect load-balance indicator \(p \)
 – Execution time of the previous time step
 • Problem: Performance different between two time steps can be dramatic.
 – The fullness of the buffer \(F \)

\[
\psi_i^{\text{sim}} - \psi_i^{\text{vis}} \approx \phi(p) = \phi(F) = \begin{cases}
-1.0 & \text{if } F = 0, \\
0.0 & \text{if } F \in \{1, \ldots, B - 1\}, \\
1.0 & \text{if } F = B,
\end{cases}
\]
Dynamic Load Balancing: Result

- Stability of the Dynamic Scheduling Algorithm

No parameter change (only at the beginning)

Parameters change at the dotted line.
Comparison: Dynamic vs. Static Scheduling

- 2000 Particles
 - Time (s) vs. Number of Rendering Tasks
 - Static (blue diamond) vs. Dynamic (red square)

- 4000 Particles
 - Time (s) vs. Number of Rendering Tasks
 - Static (blue diamond) vs. Dynamic (red square)

Performance Speedup over static load-balancing

- Percent Speedup vs. Dataset Size (Thousands of Particles)
 - Speedup Over Average (blue diamond)
 - Speedup Over Optimal (red square)
 - Speedup Over Worst (green triangle)
Conclusion

+ Pipelining
+ Dynamic load balancing
- Fine granularity load balancing (SM level)
- Communication overhead
- Programmability: Software framework, Library
Question(s):

- Contact Information:

Yong Cao
Computer Science Department
Virginia Tech
Email: yongcao@vt.edu
Website: www.cs.vt.edu/~yongcao