A Peta-scale LES (Large-Eddy Simulation) for Turbulent Flows Based on Lattice Boltzmann Method

Takayuki Aoki

Global Scientific Information and Computing Center (GSIC)
Tokyo Institute of Technology
TSUBAME 2.0

Compute Node (3 Tesla M2050 GPUs)
Performance: 1.7 TFLOPS
Memory: 58.0GB(CPU) + 9.7GB(GPU)

Rack (30 nodes)
Performance: 51.0 TFLOPS
Memory: 2.03 TB

System (58 racks)
1442 nodes: 2952 CPU sockets, 4264 GPUs
Performance: 224.7 TFLOPS (CPU) ▲ Turbo Boost 2196 TFLOPS (GPU)
Total: 2420 TFLOPS
TSUBAME Supercomputer

2013 Q3 or Q4
All the GPU will be replaced by new accelerators

TSUBAME 2.5 will have 15-17 PFlops in single precision performance.
Drop on dry floor
Industrial Appl.
Steering Oil
Development of New Materials

Mechanical Structure

Low-carbon society

- Improvement of fuel efficiency by reducing the weight of transportation and mechanical structures
- Developing lightweight strengthening material by controlling microstructure
ACM Gordon Bell Prize
Special Achievements in Scalability and Time-to-Solution

Takashi Shimokawa, Takayuki Aoki, Tomohiro Takaki, Akinori Yamunaka, Akira Nakada, Toshio Endo, Naoya Maruyama, Satoshi Matsuoka

Peta-Scale Phase-Field Simulation for Dendritic Solidification on the TSUBAME 2.0 Supercomputer
Weather News
Full GPU Approach: ASUCA

ASUCA Production Code

- A next-generation high resolution weather simulation code that is being developed by Japan Meteorological Agency (JMA)
- ASUCA succeeds the JMA-NHM as an operational non-hydrostatic regional model at JMA

J. Ishida, C. Muroi, K. Kawano, Y. Kitamura, Development of a new nonhydrostatic model “ASUCA” at JMA, CAS/JSC WGNE Reserch Activities in Atmospheric and Oceanic Modelling.
ASUCA Typhoon Simulation
500m-horizontal resolution 4792 x 4696 x 48
Using 437 GPUs
Lattice Boltzmann Method

\[\frac{\partial f_i}{\partial t} + \mathbf{e}_i \cdot \nabla f_i = -\frac{1}{\lambda} (f_i - f_i^{eq}) \]

\[f_i^{eq} = \rho w_i \left[1 + \frac{3}{c^2} (\mathbf{e}_i \cdot \mathbf{u}) + \frac{9}{2c^4} (\mathbf{e}_i \cdot \mathbf{u})^2 - \frac{3}{2c^2} (\mathbf{u} \cdot \mathbf{u}) \right] \]

Strongly Memory Bound Problem:

Collision step:
Streaming step:

\(i \) is the value in the direction of \(ith \) discrete velocity
\(\mathbf{e}_i \) is the discrete velocity set;
\(w_i \) is the weighting factor
\(c \) is the particle velocity
\(\mathbf{u} \) is the macroscopic velocity
LES (Large-Eddy Simulation)

\[f_i(x + c_i \Delta t, t + \Delta t) = f_i(x, t) - \frac{1}{\tau_*} (f_i(x, t) - f_i^{eq}(x, t)) + F_i \]

Relaxation time for LES model

\[\tau_* = \frac{1}{2} + \frac{3\nu_*}{c^2 \Delta t} \]

\[\nu_* = \nu_0 + \nu_t \]

Molecular viscosity and Eddy viscosity

Energy spectrum

Copyright © Global Scientific Information and Computing Center, Tokyo Institute of Technology
LES modeling

- Simple
- \(\Delta\) inaccurate for the flow with wall boundary
- \(\Delta\) empirical tuning for the constant model coefficient

\[
\tau_{ij} = -2\nu_{SGS} S_{ij}
\]
\[
\nu_{SGS} = C\Delta^2 |S| \quad \text{\(C : \text{const}\)}
\]

- applicable to wall boundary
- \(\Delta\) complicated calculation
- \(\Delta\) average process over the wide area
- \(\rightarrow\) not available for complex shaped body
- \(\rightarrow\) not suitable for large-scale problem

\[

L_{ij} = \bar{u}_i \bar{u}_j - \bar{u}_i \bar{u}_j
\]
\[
M_{ij} = 2\Delta^2 |\bar{S}| \bar{S}_{ij} - 2\Delta^2 |\bar{S}| \bar{\bar{S}}_{ij}
\]

\[
\nu_{SGS} = C\Delta^2 |S| \rightarrow \text{model coefficient determined by the second invariant of the velocity gradient tensor}
\]

- \(\Delta\) model coefficient
- \(\circ\) applicable to wall boundary
- \(\circ\) model coefficient is locally determined.

\[
C = C_1 |F_{CS}|^{3/2}
\]

\[
F_{CS} = \frac{Q}{E} = \frac{-1}{2} \frac{\partial \bar{u}_j}{\partial x_i} \frac{\partial \bar{u}_i}{\partial x_j} \quad E = \frac{1}{2} \left(\frac{\partial \bar{u}_j}{\partial x_i} \right)^2
\]

\((-1 < F_{CS} < 1)\)
LES modeling on LBM

Turbulence model:

\[v_\ast = v_0 + v_t = \frac{1}{3} \left(\tau_\ast - \frac{1}{2} \right) c^2 \delta_t = \frac{1}{3} \left(\tau_0 + \tau_t - \frac{1}{2} \right) c^2 \delta_t, \quad v_t := \frac{1}{3} \tau_t c^2 \delta_t, \]

Molecular viscosity + eddy viscosity

\[v_t = (C_S \Delta_x)^2 \bar{S} \]

Smagorinsky model subgrid closure

\[C_S = 0.22 \]

\[\bar{S}_{ij} = \frac{1}{2} \left(\partial_j \bar{u}_i + \partial_i \bar{u}_j \right) \quad \bar{S} = \sqrt{2 \sum_{i,j} \bar{S}_{ij} \bar{S}_{ij}} \]
Coherent-structure SGS model

Dynamic Smagorinsky model (DSM)
DSM requires to take an average operation for a wide area to determine the model parameter.

\[\nu_{SGS} = C \Delta^2 |S| \]
\[C = \frac{<L_{ij}L_{ij}>}{<M_{ij}M_{ij}>} \]
\[L_{ij} = \tilde{u}_i \tilde{u}_j - \hat{u}_i \hat{u}_j \]
\[M_{ij} = 2 \Delta^2 |\tilde{S}| \tilde{S}_{ij} - 2 \Delta^2 |\hat{S}| \hat{S}_{ij} \]
\[< > : \text{average operation} \]

Coherent-structure Smagorinsky model
The model parameter is locally determined by the second invariant of the velocity gradient tensor.

\[\nu_{SGS} = C \Delta^2 |S| \]
\[C = C_1 |F_{CS}|^{3/2} \]
\[F_{CS} = \frac{Q}{E} \]

- Automatically determine model coefficient
- Turbulent flow around a complex object
- Computational efficiency is poor

Second invariant of the velocity gradient tensor (Q) and Energy dissipation (ε)
Computational Area

Major part of Tokyo
Including Shinjuku-ku, Chiyoda-ku, Minato-ku, Meguro-ku, Chuou-ku,

10km ⎯ 10km

Building Data:
Pasco Co. Ltd.
TDM 3D

Map ©2012 Google, ZENRIN
Area Around Metropolitan Government Building

Flow profile at the 25m height on the ground

Wind

960 m

640 m

地图データ ©2012 Google, ZENRIN

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology
Performance of the GPU code

Performance estimation by using Improved Roofline Model

* CUDA Programming Tuning
 Using SFU (Special Function Unit) and single precision computation

Kernel fusion of the collision step and streaming step

Loop unrolling to save register usage

+ Reduction of the address calculation by use of a 32-bit compile option

32bit compile
198 GFlops (efficiency 92%)
310 MLUPS
(Mega Lattice site Updates /sec)

64bit compile
183 GFlops (efficiency 88%)
Performance (Strong Scalability)

- For the fixed problem size, the performances are shown with increasing the number of GPUs. By introducing the overlapping technique, the performance is improved up to 30%.

- It is found that the elapsed time is shortened by increasing GPUs.
Performance (Weak Scalability)

600 TFLOPS on 4000 GPUs

15% of the peak performance
Turbulent Flow behind football

Re = 100,000

Mesh:
2000x1000x1000
DriVar: BMW-Audi

3,000x1,500x1,500
Re = 1,000,000
SUMMARY

- Lattice Boltzmann LES turbulent simulation has been successfully conducted with 1-m resolution for 10km x 10km area by using the whole TSUBAME 2.0 resource.

- Coherent-Structure Smagorinsky model works well in association with LBM.

- The performance of 15% has been achieved on TSUBAME 2.0.
Thank you
for your kind attention