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Accelerator directives – what are they and why use them 

3 



 A common directive programming model for today’s GPUs 

 Announced at SC11 conference 

 Offers portability between compilers 
 Drawn up by: NVIDIA, Cray, PGI, CAPS 

 Multiple compilers offer portability, debugging, permanence 

 Works for Fortran, C, C++ 
 Standard available at www.OpenACC-standard.org 

 Initially implementations targeted at NVIDIA GPUs 

 Current version: 1.0 (November 2011) 

 Next version: 2.0 (2013) 

 Compiler support 
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 A common directive programming model for (not so) 
shared memory systems 

 Announced 15yrs ago 

 Works with Fortran, C, C++ 

 Current version 3.1 (July 2011) 

 Accelerator version (2013) 

 Compiler support 

 http://openmp.org/wp/openmp-compilers/ 
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 Host-directed execution with attached GPU 

 Main program executes on “host” (i.e. CPU) 
 Compute intensive regions offloaded to the accelerator device 

 under control of the host.  

 “device” (i.e. GPU) executes parallel regions 
 typically contain “kernels” (i.e. work-sharing loops), or 

 kernels regions, containing one or more loops which are executed as kernels.   

 Host must orchestrate the execution by:  
 allocating memory on the accelerator device,  

 initiating data transfer,  

 sending the code to the accelerator,  

 passing arguments to the parallel region,  

 queuing the device code,  

 waiting for completion,  

 transferring results back to the host, and  

 deallocating memory.   

 Host can usually queue a sequence of operations  
 to be executed on the device, one after the other. 
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 Memory spaces on the host and device distinct 

 Different locations, different address space 

 Data movement performed by host using runtime library calls that explicitly move data 
between the separate  

 GPUs have a weak memory model 

 No synchronisation between different execution units (SMs) 
 Unless explicit memory barrier 

 Can write OpenACC kernels with race conditions 
 Giving inconsistent execution results 

 Compiler will catch most errors, but not all (no user-managed barriers) 

 OpenACC 

 data movement between the memories implicit 
 managed by the compiler, 

 based on directives from the programmer. 

 Device memory caches are managed by the compiler  
 with hints from the programmer in the form of directives.  
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 Most important hurdle for widespread adoption of 
accelerated computing in HPC is programming 
difficulty. 

 Proprietary languages  

 Need portability across platforms 
 AMD, Intel, Nvidia, etc. 

 Device and host 

 Multi-language 

 Single code base 

 Multi-vendor support 
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 Sum elements of an array 

 Original Fortran code 

 

 

 

a=0.0 

  

do i = 1,n 

 a = a + b(i) 

end do 
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  if (tid < 32) { 
        volatile T* smem = sdata; 
        if (blockSize >=  64) { smem[tid] = mySum = mySum + smem[tid + 32];  } 
        if (blockSize >=  32) { smem[tid] = mySum = mySum + smem[tid + 16];  } 
        if (blockSize >=  16) { smem[tid] = mySum = mySum + smem[tid + 8];  } 
        if (blockSize >=   8) { smem[tid] = mySum = mySum + smem[tid + 4];  } 
        if (blockSize >=   4) { smem[tid] = mySum = mySum + smem[tid + 2];  } 
        if (blockSize >=   2) { smem[tid] = mySum = mySum + smem[tid + 1];  } 
    } 
    if (tid == 0) g_odata[blockIdx.x] = sdata[0]; 
} 
extern "C" void reduce6_cuda_(int *n, int *a, int *b) { 
   int *b_d; 
   const int b_size = *n; 
  
   cudaMalloc((void **) &b_d , sizeof(int)*b_size); 
   cudaMemcpy(b_d, b, sizeof(int)*b_size, cudaMemcpyHostToDevice); 
   dim3 dimBlock(128, 1, 1); 
   dim3 dimGrid(128, 1, 1); 
   dim3 small_dimGrid(1, 1, 1); 
   int smemSize = 128 * sizeof(int); 
   int *buffer_d; 
   int small_buffer[4],*small_buffer_d; 
  
   cudaMalloc((void **) &buffer_d , sizeof(int)*128); 
   cudaMalloc((void **) &small_buffer_d , sizeof(int)); 
   reduce6<int,128,false><<< dimGrid, dimBlock, smemSize >>>(b_d,buffer_d, b_size); 
   reduce6<int,128,false><<< small_dimGrid, dimBlock, smemSize>>>(buffer_d, small_buffer_d,128); 
   cudaMemcpy(small_buffer, small_buffer_d, sizeof(int), cudaMemcpyDeviceToHost); 
  
   *a = *small_buffer; 
  
   cudaFree(buffer_d); 
   cudaFree(small_buffer_d); 
   cudaFree(b_d); 
}  

template<class T> 
struct SharedMemory { 
    __device__ inline operator       T*() { 
        extern __shared__ int __smem[]; 
        return (T*)__smem; 
    } 
    __device__ inline operator const T*() const { 
        extern __shared__ int __smem[]; 
        return (T*)__smem; 
    } 
}; 
  
template <class T, unsigned int blockSize, bool nIsPow2> 
__global__ void reduce6(T *g_idata, T *g_odata, unsigned int n) { 
    T *sdata = SharedMemory<T>(); 
  
    unsigned int tid = threadIdx.x; 
    unsigned int i = blockIdx.x*blockSize*2 + threadIdx.x; 
    unsigned int gridSize = blockSize*2*gridDim.x; 
  
    T mySum = 0; 
    while (i < n)     { 
        mySum += g_idata[i]; 
        if (nIsPow2 || i + blockSize < n) 
            mySum += g_idata[i+blockSize]; 
        i += gridSize; 
    } 
    sdata[tid] = mySum; 
    __syncthreads(); 
  
    if (blockSize >= 512) { if (tid < 256) { sdata[tid] = mySum = mySum + sdata[tid + 256]; } 
__syncthreads(); } 
    if (blockSize >= 256) { if (tid < 128) { sdata[tid] = mySum = mySum + sdata[tid + 128]; } 
__syncthreads(); } 
    if (blockSize >= 128) { if (tid <  64) { sdata[tid] = mySum = mySum + sdata[tid +  64]; } 
__syncthreads(); } 
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!$acc data present(a,b) 

  

a = 0.0 

  

!$acc update device( a ) 

!$acc parallel 

!$acc loop reduction(+:a) 

  

do i = 1,n 

  a = a + b(i) 

end do 

   

!$acc end parallel 

!$acc end data 

 

 

 

 Compiler does the work: 

• Identifies parallel loops within 

the region 

• Determines the kernels needed 

• Splits the code into accelerator 

and host portions 

• Workshares loops running on 

accelerator 

 Make use of MIMD and SIMD 

style parallelism 

• Data movement 

 allocates/frees GPU memory at 

start/end of region 

 moves of data to/from GPU 

TM 
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TM 

  

a = 0.0 
 

!$omp target update to( a ) 

!$omp target 

!$omp parallel 

!$acc do reduction(+:a) 

do i = 1,n 

  a = a + b(i) 

end do 

!$omp end do 

!$omp end parallel 

!$omp end target 

 

 

  

a = 0.0 
 

!$omp target update to( a ) 

!$omp target 

!$omp team  

!$acc distribute reduction(+:a) 

do i = 1,n 

  a = a + b(i) 

end do 

!$omp end distribute 

!$omp end team 

!$omp end target 
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Difference between Accelerator Directives 
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 Parallel (offload) 

 Parallel (multiple “threads”) 

 Kernels 

 Data 

 Loop 

 Host data 

 Cache 

 Update 

 Wait  

 Declare 

 

 Target 

 Team/Parallel 

   

 Target Data 

 Distribute/Do/for 

   

   

 Update 

   

 Declare 

OpenACC 1 OpenMP 
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 enter data  

 exit data  

 data api 

 routine 

 async wait 

 parallel in parallel 

 tile 

   

   

   

 declare target 

   

 Parallel in parallel or team  
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OpenACC 2 OpenMP 



   

   

   

   

   

   

   

   

   

 

 Atomic 

 Critical sections 

 Master 

 Single 

 Tasks 

 barrier 

 get_thread_num 

 get_num_threads 

 … 
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OpenACC  OpenMP 



 Target does NOT take an async clause! 

 Does this mean no async capabilities? 

 OpenMP already has async capabilities -- Tasks 

 !$omp task 

 #pagma omp task 

 Is this the best solution? 
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Cray Compilation Environment (CCE) 
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 man intro_openacc 

 Which module to use, craype-accel-nvidia35 
 Kepler hardware 

 Forces dynamic linking 

 Single object file 

 Whole program  

 Messages/list file 

 Compiles to PTX not cuda 

 Debugger sees original program not cuda intermediate 
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 auto_async_(none | kernel | all) 

 [no_]fast_addr 

 [no_]deep_copy 

-hacc_model= 
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 async(handle): like CUDA streams 

 allows overlap of tasks on GPU 
 PCIe transfers in both directions 

 Plus multiple kernels (up to 16 with Fermi) 

 streams identified by handle 
 tasks with same handle execute sequentially 

 can wait on one, more or all tasks 

 OpenACC API also allows completeness check  

 First attempt, a simple pipeline: 

 processes array, slice by slice 
 copy data to GPU, process, bring back to CPU 

 very complicated kernel operation here! 

 should be able to overlap 3 streams at once 
 use slice number as stream handle in this case 

 runtime MODs it back into allowable range 

 Can actually overlap more than three stream 
 No benefit on this test 

 

INTEGER, PARAMETER :: Nvec = 10000, Nchunks = 10000 

 

REAL(kind=dp) :: a(Nvec,Nchunks), b(Nvec,Nchunks) 

!$acc data create(a,b) 

DO j = 1,Nchunks 

!$acc update device(a(:,j)) async(j) 

!$acc parallel loop async(j) 

  DO i = 1,Nvec 

    b(i,j) = SQRT(EXP(a(i,j)*2d0)) 

    b(i,j) = LOG(b(i,j)**2d0)/2d0 

  ENDDO 

!$acc update host(b(:,j)) async(j) 

ENDDO 

!$acc wait 

!$acc end data 
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 Execution times (on Cray XK6): 

 CPU:   3.98s 

 OpenACC, blocking:  3.6s 

 OpenACC, async:  0.82s 

 OpenACC, full async:   0.76s 

 NVIDIA Visual profiler: 
 time flows to right, streams stacked vertically 

 red:  data transfer to GPU 

 pink: computational kernel on GPU 

 blue: data transfer from GPU 

 vertical slice shows what is overlapping 

 only 7 of 16 streams fit in window 

 collapsed view at bottom 

 async handle modded by number of streams 

 so see multiple coloured bars per stream 
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  target data map(alloc:a,b) 

 allocates space for a and b 

 task depend(out:a(:,j)) 
target update to(a(:,j)) 

 Copy host value of a(:,j) to device 

 Start async dependency chain on data 

 task depend(in:a(:,j)) depend(out:b(:,j)) 
target team distribute  

 execute loop across TB 

 Wait on update, start dependency chain on b 

 task depend(out:b(:,j)) 
target update from(b(:,j)) 

 Copy device value of b(:,j) 

 Wait on compute kernel 

 taskwait 

 Force all tasks to complete before data is removed 
from device 

INTEGER, PARAMETER :: Nvec = 10000, Nchunks = 10000 
REAL(kind=dp) :: a(Nvec,Nchunks), b(Nvec,Nchunks) 
 

!$omp target data map(alloc:a,b) 
 

DO j = 1,Nchunks 
 

!$omp task depend(out:a(:,j)) 
!$omp target update to(a(:,j))  
!$omp end task 
 
!$omp task depend(in:a(:,j)) depend(out:b(:,j)) 
!$omp target team distribute  
  DO i = 1,Nvec 
    b(i,j) = SQRT(EXP(a(i,j)*2d0)) 
    b(i,j) = LOG(b(i,j)**2d0)/2d0 
  ENDDO 
!$omp end target team distribute 
!$omp end task 
 
!$omp task depend(out:b(:,j)) 
!$omp target update from(b(:,j)) 
!$omp end task  
 

ENDDO 
 

!$omp taskwait 
 
!$omp end target data 

23 



Example code 
!$acc data copy( a, b )  

do i = 1, n 

!$acc parallel loop 

    do j = 1, m 

        a(i) = func_j(j,a,b) 

    end do 

!$acc parallel loop 

    do j = 1, m 

        b(i) = func_j(j,b,a) 

    end do 

end do 

 auto_async_none 

 auto_async_kernel 

 auto_async_all 

What happens with –haccel_mode= 
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Example code 

!$acc data copyout( a )  

do i = 1, n 

   a(i) = func_i(i) 

!$acc update device( a(i) ) 

!$acc parallel loop 

    do j = 1, m 

        a(i) = func_j(j,a) 

    end do 

end do 

 auto_async_none 

 auto_async_kernel 

 auto_async_all 

What happens with –haccel_mode= 
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Example code 

!$acc data copyout( a )  

do i = 1, n 

   a = func_i(i) 

!$acc update device( a ) 

!$acc parallel loop 

    do j = 1, m 

        a = func_j(j,a) 

    end do 

end do 

 fast_addr 

What happens with –haccel_mode= 
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 Parallel/kernels 
 Flatten all calls 

 Identify kernels (kernels construct) 

 Package code for kernel  

 Generate PTX code for packaged code 

 Insert data motion to and from device 

 Insert kernel launch code 

 Automatic vectorization is enabled (!$acc 
loop vector) 

 Update 

 Implicit !$acc data present( obj ) 

 For known contiguous memory 
 Transfer (Essentially a CUDA memcpy) 

 Not contiguous memory 
 Pack into contiguous buffer 

 Transfer contiguous  

 Unpack from contiguous buffer 
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 Loop 

 Gang  
 Thread Block (TB) 

 Worker 
 warp 

 Vector 
 Threads within a warp or TB 

 Automatic vectorization is enabled 

 Collapse 
 Will only rediscover indices when required 

 Independent 
 Turns off safety/correctness checking for 

work-sharing of loop 

 Reduction 
 Nontrivial to implement 

 Does not use multiple kernels 

 



 Cache 
 Create shared memory “copies” of objects 

 Objects are sized according to directive reuse size 

 Loop Cache ( a[i-1:3] )  shared_a[3*vector_wide]  

 Generate a shared copy of array that is sized by the users directive and the 
subsequent strip mined loop. 

 Generate copy into shared memory objects 

 Generate copy out of shared memory objects 
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1. !$acc loop gang : across thread blocks  

2. !$acc loop worker : across  warps within a thread block  

3. !$acc loop vector : across threads within  a warp 

 

1. !$acc loop gang : across thread blocks  

2. !$acc loop worker vector :  across threads within a thread block 

 

1. !$acc loop gang : across thread blocks  

2. !$acc loop vector : across threads within a thread block 

 

1. !$acc loop gang worker: across thread blocks and the warps within a thread block 

2. !$acc loop vector : across threads within a warp 

 

1. !$acc loop gang vector : across thread blocks and threads within a thread block 

 

1. !$acc loop gang worker vector : across thread blocks and threads within a thread block 
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You can also force things to be within a single thread block: 

 
1. !$acc loop worker : across warps within a single thread block  

2. !$acc loop vector : across threads within a warp 

 

1. !$acc worker vector : across threads within a single thread block 

 

1. !$acc vector : across threads within a single thread block 
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/* takes a host pointer */ 

void* cray_acc_create( void* , size_t ); 

void  cray_acc_delete( void* ); 

void* cray_acc_copyin( void*, size_t ); 

void  cray_acc_copyout( void*, size_t ); 

void  cray_acc_updatein( void*, size_t ); 

void  cray_acc_updateout( void*, size_t ); 

int   cray_acc_is_present( void* ); 

int   cray_acc_is_present_2( void*, size_t); 

void *cray_acc_deviceptr( void* ); 

 

/* takes a device and host pointer */ 

void  cray_acc_memcpy_device_host( void*, void*, size_t ); 

/* takes a host and device pointer */ 

void  cray_acc_memcpy_host_device( void*, void*, size_t ); 

 

/* Takes a pointer to an implementation defined type */ 

bool cray_acc_get_async_info( void *, int ) 

 

Version 1. 0 
Version 2. 0 
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1) Identify parallel opportunities  

2) For each parallel opportunity 
1) Add OpenACC Parallel Loop(s) 
2) Verify correctness 
3) Avoid data clause when possible, use present_or_* when required 

3) Optimize “kernel” performance (how?) 
1) Add additional Acc Loop directives 
2) Add tuning clause/directives (Collapse, Cache, Num_gangs, 

num_workers, vector_length, …) 
3) Algorithmic enhancements/code rewrites* 

4) Try fast address option 
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When making changes verify 
correctness often! 
 
You cannot verify 
correctness too often! 



5) Add data regions/updates 
1) Try to put data regions as high in the call chain as profitable 
2) Working with one variable at a time can make things more 

manageable 
3) To identify data correctness issues can add excessive updates and 

remove them verifying correctness. 

6) Try auto async all 

1) Auto async kernel is default 

7) Add async clauses and waits 

1) If synchronization issues are suspected, try adding extra waits and 
slowly remove them. 
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When making changes verify 
correctness often! 
 
You cannot verify 
correctness too often! 



 All parallel regions should contain a loop directive 

 Fortran assumed size (A(*)) and C pointers must be shaped 

 Always use ‘:’ when shaping with an entire dimension (i.e. 
A(:,1:2) ) 

 Host_data probably requires waits when combined with 
auto_async_(kernels|all) 

 Should start with auto_async_none 

 Update (*) if( is_present(*)) can make code more composable 

 

34 



 Pretty much the analog of OpenACC tips! 

 Start with “target team distribute” 

 … 
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 Deep copy 

 Selective deep copy 

 Structure shaping 

 

Extensions 
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 OpenACC supports a “flat” object model 
 Primitive types 
 Composite types without allocatable/pointer members 

struct { 

  int x[2]; // static size 2 

} *A;       // dynamic size 2 

#pragma acc data copy(A[0:2]) 

Host Memory: A[0].x[0] A[0].x[1] A[1].x[0] A[1].x[1] 

dA[0].x[0] dA[0].x[1] dA[1].x[0] dA[1].x[1] Device Memory: 
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 Non-contiguous transfers 

 Pointer translation 
struct { 

  int *x; // dynamic size 2 

} *A;     // dynamic size 2 

#pragma acc data copy(A[0:2]) 

Host Memory: 

Device Memory: 

A[0].x A[1].x x[0] x[1] x[0] x[1] 
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 Non-contiguous transfers 

 Pointer translation 
struct { 

  int *x; // dynamic size 2 

} *A;     // dynamic size 2 

#pragma acc data copy(A[0:2]) 

Host Memory: 

Device Memory: 

Shallow Copy 

dA[0].x dA[1].x 

A[0].x A[1].x x[0] x[1] x[0] x[1] 
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 Non-contiguous transfers 

 Pointer translation 
struct { 

  int *x; // dynamic size 2 

} *A;     // dynamic size 2 

#pragma acc data copy(A[0:2]) 

Host Memory: 

Device Memory: 

A[0].x A[1].x x[0] x[1] x[0] x[1] 

dA[0].x dA[1].x x[0] x[1] x[0] x[1] 

Deep Copy 
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 Re-write application 
 Use “flat” objects 

 Manual deep copy 
 Issue multiple transfers 
 Translate pointers 

 Compiler-assisted deep copy 
 Automatic for fortran 

 -hacc_models=deep_copy 
 Dope vectors are self describing 

 OpenACC extensions for C/C++ 
 Pointers require explicit shapes 

Appropriate 
for CUDA 

Appropriate 
for OpenACC 
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 Currently works for C/C++ 

 Portable in OpenACC 2.0, but not usually practical 

struct A_t { 

  int n; 

  int *x;      // dynamic size n 

}; 

... 

struct A_t *A; // dynamic size 2 

/* shallow copyin A[0:2] to device_A[0:2] */ 

struct A_t *dA = acc_copyin( A, 2*sizeof(struct A_t) ); 

for (int i = 0 ; i < 2 ; i++) { 

  /* shallow copyin A[i].x[0:A[i].n] to "orphaned" object */ 

  int *dx = acc_copyin( A[i].x, A[i].n*sizeof(int) ); 

  /* fix acc pointer device_A[i].x */ 

  acc_memcpy_to_device( &dA[i].x, &dx, sizeof(int*) ); 

} 
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 No aliases on the accelerator 

 Must be contiguous 

 On or off – no “selective” deep copy 

 Only works for Fortran 

type A_t 

   integer,allocatable :: x(:) 

end type A_t 

... 

type(A_t),allocatable :: A(:) 

... 

! shallow copy with -hacc_model=no_deep_copy (default) 

!    deep copy with -hacc_model=deep_copy 

!$acc data copy(A(:)) 
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 a.iptr is found on device so fixup value with device pointer 

 If object is not present than no fixup and no error, “user selective” 

 

typedef struct { 

  int *iptr; 

} iptr_t; 

iptr_t a; 

a.iptr = malloc(8); 

acc_copyin( a.iptr, 8 ); 

... 

! shallow copy with -hacc_model=no_deep_copy (default) 

!    deep copy “fixup” with -hacc_model=deep_copy 

#pragma acc data copy( a ) 
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 Each object must shape it’s own pointers 

 Member pointers must be contiguous 

 No polymorphic types (types must be known statically) 

 Pointer association may not change on accelerator (including allocation/deallocation) 

 Member pointers may not alias (no cyclic data structures) 

 Assignment operators, copy constructors, constructors or destructors are not invoked  

struct A_t { 

  int n; 

  int *x;      // dynamic size n 

#pragma acc declare shape(x[0:n]) 

}; 

... 

struct A_t *A; // dynamic size 2 

... 

/* deep copy */ 

#pragma acc data copy(A[0:2]) 
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extern int size_z(); 

int size_y; 

struct Foo 

{ 

  double* x; 

  double* y; 

  double* z; 

  int     size_x; 

  // deep copy x, y, and z 

  #pragma acc declare shape(x[0:size_x], y[1:size_y-1], z[0:size_z()]) 

}; 

type Foo 

    real,allocatable :: x(:) 

    real,pointer     :: y(:) 

    !$acc declare shape(x)   ! deep copy x 

    !$acc declare unshape(y) ! do not deep copy y 

end type Foo 



 Library 
 Support for type descriptors 

 Compiler 
 Automatic generation of type descriptors for Fortran 

 Compiler flag to enable/disable deep copy 
 Released in CCE 8.1 
 Significant internal testing, moderate customer testing 

 Directive-based generation of type descriptors for C/C++ 
 Planned for release in CCE 8.2 
 Limited preliminary internal testing 

 Language 
 Committee recognizes the utility and need 
 Will revisit after OpenACC 2.0 
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 Directive based programming models are progressing 

 OpenACC 


