
Dr. James C. Beyer

 Accelerator directives – what are they and why use them

 Difference between Accelerator Directives

 Cray Compilation Environment (CCE)

 What does CCE do with *?

 -hacc_model=

 Extensions
 Structure shaping

 Deep copy

 Selective deep copy

 Conclusions

2

Accelerator directives – what are they and why use them

3

 A common directive programming model for today’s GPUs

 Announced at SC11 conference

 Offers portability between compilers
 Drawn up by: NVIDIA, Cray, PGI, CAPS

 Multiple compilers offer portability, debugging, permanence

 Works for Fortran, C, C++
 Standard available at www.OpenACC-standard.org

 Initially implementations targeted at NVIDIA GPUs

 Current version: 1.0 (November 2011)

 Next version: 2.0 (2013)

 Compiler support

4 4

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

 A common directive programming model for (not so)
shared memory systems

 Announced 15yrs ago

 Works with Fortran, C, C++

 Current version 3.1 (July 2011)

 Accelerator version (2013)

 Compiler support

 http://openmp.org/wp/openmp-compilers/
5

http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/openmp-compilers/

 Host-directed execution with attached GPU

 Main program executes on “host” (i.e. CPU)
 Compute intensive regions offloaded to the accelerator device

 under control of the host.

 “device” (i.e. GPU) executes parallel regions
 typically contain “kernels” (i.e. work-sharing loops), or

 kernels regions, containing one or more loops which are executed as kernels.

 Host must orchestrate the execution by:
 allocating memory on the accelerator device,

 initiating data transfer,

 sending the code to the accelerator,

 passing arguments to the parallel region,

 queuing the device code,

 waiting for completion,

 transferring results back to the host, and

 deallocating memory.

 Host can usually queue a sequence of operations
 to be executed on the device, one after the other.

6

 Memory spaces on the host and device distinct

 Different locations, different address space

 Data movement performed by host using runtime library calls that explicitly move data
between the separate

 GPUs have a weak memory model

 No synchronisation between different execution units (SMs)
 Unless explicit memory barrier

 Can write OpenACC kernels with race conditions
 Giving inconsistent execution results

 Compiler will catch most errors, but not all (no user-managed barriers)

 OpenACC

 data movement between the memories implicit
 managed by the compiler,

 based on directives from the programmer.

 Device memory caches are managed by the compiler
 with hints from the programmer in the form of directives.

7

 Most important hurdle for widespread adoption of
accelerated computing in HPC is programming
difficulty.

 Proprietary languages

 Need portability across platforms
 AMD, Intel, Nvidia, etc.

 Device and host

 Multi-language

 Single code base

 Multi-vendor support

8

 Sum elements of an array

 Original Fortran code

a=0.0

do i = 1,n

 a = a + b(i)

end do

9

 if (tid < 32) {
 volatile T* smem = sdata;
 if (blockSize >= 64) { smem[tid] = mySum = mySum + smem[tid + 32]; }
 if (blockSize >= 32) { smem[tid] = mySum = mySum + smem[tid + 16]; }
 if (blockSize >= 16) { smem[tid] = mySum = mySum + smem[tid + 8]; }
 if (blockSize >= 8) { smem[tid] = mySum = mySum + smem[tid + 4]; }
 if (blockSize >= 4) { smem[tid] = mySum = mySum + smem[tid + 2]; }
 if (blockSize >= 2) { smem[tid] = mySum = mySum + smem[tid + 1]; }
 }
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
extern "C" void reduce6_cuda_(int *n, int *a, int *b) {
 int *b_d;
 const int b_size = *n;

 cudaMalloc((void **) &b_d , sizeof(int)*b_size);
 cudaMemcpy(b_d, b, sizeof(int)*b_size, cudaMemcpyHostToDevice);
 dim3 dimBlock(128, 1, 1);
 dim3 dimGrid(128, 1, 1);
 dim3 small_dimGrid(1, 1, 1);
 int smemSize = 128 * sizeof(int);
 int *buffer_d;
 int small_buffer[4],*small_buffer_d;

 cudaMalloc((void **) &buffer_d , sizeof(int)*128);
 cudaMalloc((void **) &small_buffer_d , sizeof(int));
 reduce6<int,128,false><<< dimGrid, dimBlock, smemSize >>>(b_d,buffer_d, b_size);
 reduce6<int,128,false><<< small_dimGrid, dimBlock, smemSize>>>(buffer_d, small_buffer_d,128);
 cudaMemcpy(small_buffer, small_buffer_d, sizeof(int), cudaMemcpyDeviceToHost);

 *a = *small_buffer;

 cudaFree(buffer_d);
 cudaFree(small_buffer_d);
 cudaFree(b_d);
}

template<class T>
struct SharedMemory {
 __device__ inline operator T*() {
 extern __shared__ int __smem[];
 return (T*)__smem;
 }
 __device__ inline operator const T*() const {
 extern __shared__ int __smem[];
 return (T*)__smem;
 }
};

template <class T, unsigned int blockSize, bool nIsPow2>
__global__ void reduce6(T *g_idata, T *g_odata, unsigned int n) {
 T *sdata = SharedMemory<T>();

 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockSize*2 + threadIdx.x;
 unsigned int gridSize = blockSize*2*gridDim.x;

 T mySum = 0;
 while (i < n) {
 mySum += g_idata[i];
 if (nIsPow2 || i + blockSize < n)
 mySum += g_idata[i+blockSize];
 i += gridSize;
 }
 sdata[tid] = mySum;
 __syncthreads();

 if (blockSize >= 512) { if (tid < 256) { sdata[tid] = mySum = mySum + sdata[tid + 256]; }
__syncthreads(); }
 if (blockSize >= 256) { if (tid < 128) { sdata[tid] = mySum = mySum + sdata[tid + 128]; }
__syncthreads(); }
 if (blockSize >= 128) { if (tid < 64) { sdata[tid] = mySum = mySum + sdata[tid + 64]; }
__syncthreads(); }

10

!$acc data present(a,b)

a = 0.0

!$acc update device(a)

!$acc parallel

!$acc loop reduction(+:a)

do i = 1,n

 a = a + b(i)

end do

!$acc end parallel

!$acc end data

 Compiler does the work:

• Identifies parallel loops within

the region

• Determines the kernels needed

• Splits the code into accelerator

and host portions

• Workshares loops running on

accelerator

 Make use of MIMD and SIMD

style parallelism

• Data movement

 allocates/frees GPU memory at

start/end of region

 moves of data to/from GPU

TM

11

TM

a = 0.0

!$omp target update to(a)

!$omp target

!$omp parallel

!$acc do reduction(+:a)

do i = 1,n

 a = a + b(i)

end do

!$omp end do

!$omp end parallel

!$omp end target

a = 0.0

!$omp target update to(a)

!$omp target

!$omp team

!$acc distribute reduction(+:a)

do i = 1,n

 a = a + b(i)

end do

!$omp end distribute

!$omp end team

!$omp end target

12

Difference between Accelerator Directives

13

 Parallel (offload)

 Parallel (multiple “threads”)

 Kernels

 Data

 Loop

 Host data

 Cache

 Update

 Wait

 Declare

 Target

 Team/Parallel

 Target Data

 Distribute/Do/for

 Update

 Declare

OpenACC 1 OpenMP

14

 enter data

 exit data

 data api

 routine

 async wait

 parallel in parallel

 tile

 declare target

 Parallel in parallel or team

15

OpenACC 2 OpenMP

 Atomic

 Critical sections

 Master

 Single

 Tasks

 barrier

 get_thread_num

 get_num_threads

 …

16

OpenACC OpenMP

 Target does NOT take an async clause!

 Does this mean no async capabilities?

 OpenMP already has async capabilities -- Tasks

 !$omp task

 #pagma omp task

 Is this the best solution?

17

Cray Compilation Environment (CCE)

18

 man intro_openacc

 Which module to use, craype-accel-nvidia35
 Kepler hardware

 Forces dynamic linking

 Single object file

 Whole program

 Messages/list file

 Compiles to PTX not cuda

 Debugger sees original program not cuda intermediate

19

 auto_async_(none | kernel | all)

 [no_]fast_addr

 [no_]deep_copy

-hacc_model=

20

 async(handle): like CUDA streams

 allows overlap of tasks on GPU
 PCIe transfers in both directions

 Plus multiple kernels (up to 16 with Fermi)

 streams identified by handle
 tasks with same handle execute sequentially

 can wait on one, more or all tasks

 OpenACC API also allows completeness check

 First attempt, a simple pipeline:

 processes array, slice by slice
 copy data to GPU, process, bring back to CPU

 very complicated kernel operation here!

 should be able to overlap 3 streams at once
 use slice number as stream handle in this case

 runtime MODs it back into allowable range

 Can actually overlap more than three stream
 No benefit on this test

INTEGER, PARAMETER :: Nvec = 10000, Nchunks = 10000

REAL(kind=dp) :: a(Nvec,Nchunks), b(Nvec,Nchunks)

!$acc data create(a,b)

DO j = 1,Nchunks

!$acc update device(a(:,j)) async(j)

!$acc parallel loop async(j)

 DO i = 1,Nvec

 b(i,j) = SQRT(EXP(a(i,j)*2d0))

 b(i,j) = LOG(b(i,j)**2d0)/2d0

 ENDDO

!$acc update host(b(:,j)) async(j)

ENDDO

!$acc wait

!$acc end data

21

 Execution times (on Cray XK6):

 CPU: 3.98s

 OpenACC, blocking: 3.6s

 OpenACC, async: 0.82s

 OpenACC, full async: 0.76s

 NVIDIA Visual profiler:
 time flows to right, streams stacked vertically

 red: data transfer to GPU

 pink: computational kernel on GPU

 blue: data transfer from GPU

 vertical slice shows what is overlapping

 only 7 of 16 streams fit in window

 collapsed view at bottom

 async handle modded by number of streams

 so see multiple coloured bars per stream

22

 target data map(alloc:a,b)

 allocates space for a and b

 task depend(out:a(:,j))
target update to(a(:,j))

 Copy host value of a(:,j) to device

 Start async dependency chain on data

 task depend(in:a(:,j)) depend(out:b(:,j))
target team distribute

 execute loop across TB

 Wait on update, start dependency chain on b

 task depend(out:b(:,j))
target update from(b(:,j))

 Copy device value of b(:,j)

 Wait on compute kernel

 taskwait

 Force all tasks to complete before data is removed
from device

INTEGER, PARAMETER :: Nvec = 10000, Nchunks = 10000
REAL(kind=dp) :: a(Nvec,Nchunks), b(Nvec,Nchunks)

!$omp target data map(alloc:a,b)

DO j = 1,Nchunks

!$omp task depend(out:a(:,j))
!$omp target update to(a(:,j))
!$omp end task

!$omp task depend(in:a(:,j)) depend(out:b(:,j))
!$omp target team distribute
 DO i = 1,Nvec
 b(i,j) = SQRT(EXP(a(i,j)*2d0))
 b(i,j) = LOG(b(i,j)**2d0)/2d0
 ENDDO
!$omp end target team distribute
!$omp end task

!$omp task depend(out:b(:,j))
!$omp target update from(b(:,j))
!$omp end task

ENDDO

!$omp taskwait

!$omp end target data

23

Example code
!$acc data copy(a, b)

do i = 1, n

!$acc parallel loop

 do j = 1, m

 a(i) = func_j(j,a,b)

 end do

!$acc parallel loop

 do j = 1, m

 b(i) = func_j(j,b,a)

 end do

end do

 auto_async_none

 auto_async_kernel

 auto_async_all

What happens with –haccel_mode=

24

Example code

!$acc data copyout(a)

do i = 1, n

 a(i) = func_i(i)

!$acc update device(a(i))

!$acc parallel loop

 do j = 1, m

 a(i) = func_j(j,a)

 end do

end do

 auto_async_none

 auto_async_kernel

 auto_async_all

What happens with –haccel_mode=

25

Example code

!$acc data copyout(a)

do i = 1, n

 a = func_i(i)

!$acc update device(a)

!$acc parallel loop

 do j = 1, m

 a = func_j(j,a)

 end do

end do

 fast_addr

What happens with –haccel_mode=

26

 Parallel/kernels
 Flatten all calls

 Identify kernels (kernels construct)

 Package code for kernel

 Generate PTX code for packaged code

 Insert data motion to and from device

 Insert kernel launch code

 Automatic vectorization is enabled (!$acc
loop vector)

 Update

 Implicit !$acc data present(obj)

 For known contiguous memory
 Transfer (Essentially a CUDA memcpy)

 Not contiguous memory
 Pack into contiguous buffer

 Transfer contiguous

 Unpack from contiguous buffer

27

 Loop

 Gang
 Thread Block (TB)

 Worker
 warp

 Vector
 Threads within a warp or TB

 Automatic vectorization is enabled

 Collapse
 Will only rediscover indices when required

 Independent
 Turns off safety/correctness checking for

work-sharing of loop

 Reduction
 Nontrivial to implement

 Does not use multiple kernels

 Cache
 Create shared memory “copies” of objects

 Objects are sized according to directive reuse size

 Loop Cache (a[i-1:3]) shared_a[3*vector_wide]

 Generate a shared copy of array that is sized by the users directive and the
subsequent strip mined loop.

 Generate copy into shared memory objects

 Generate copy out of shared memory objects

 28

1. !$acc loop gang : across thread blocks

2. !$acc loop worker : across warps within a thread block

3. !$acc loop vector : across threads within a warp

1. !$acc loop gang : across thread blocks

2. !$acc loop worker vector : across threads within a thread block

1. !$acc loop gang : across thread blocks

2. !$acc loop vector : across threads within a thread block

1. !$acc loop gang worker: across thread blocks and the warps within a thread block

2. !$acc loop vector : across threads within a warp

1. !$acc loop gang vector : across thread blocks and threads within a thread block

1. !$acc loop gang worker vector : across thread blocks and threads within a thread block

29

You can also force things to be within a single thread block:

1. !$acc loop worker : across warps within a single thread block

2. !$acc loop vector : across threads within a warp

1. !$acc worker vector : across threads within a single thread block

1. !$acc vector : across threads within a single thread block

30

/* takes a host pointer */

void* cray_acc_create(void* , size_t);

void cray_acc_delete(void*);

void* cray_acc_copyin(void*, size_t);

void cray_acc_copyout(void*, size_t);

void cray_acc_updatein(void*, size_t);

void cray_acc_updateout(void*, size_t);

int cray_acc_is_present(void*);

int cray_acc_is_present_2(void*, size_t);

void *cray_acc_deviceptr(void*);

/* takes a device and host pointer */

void cray_acc_memcpy_device_host(void*, void*, size_t);

/* takes a host and device pointer */

void cray_acc_memcpy_host_device(void*, void*, size_t);

/* Takes a pointer to an implementation defined type */

bool cray_acc_get_async_info(void *, int)

Version 1. 0
Version 2. 0

31

1) Identify parallel opportunities

2) For each parallel opportunity
1) Add OpenACC Parallel Loop(s)
2) Verify correctness
3) Avoid data clause when possible, use present_or_* when required

3) Optimize “kernel” performance (how?)
1) Add additional Acc Loop directives
2) Add tuning clause/directives (Collapse, Cache, Num_gangs,

num_workers, vector_length, …)
3) Algorithmic enhancements/code rewrites*

4) Try fast address option

32

When making changes verify
correctness often!

You cannot verify
correctness too often!

5) Add data regions/updates
1) Try to put data regions as high in the call chain as profitable
2) Working with one variable at a time can make things more

manageable
3) To identify data correctness issues can add excessive updates and

remove them verifying correctness.

6) Try auto async all

1) Auto async kernel is default

7) Add async clauses and waits

1) If synchronization issues are suspected, try adding extra waits and
slowly remove them.

33

When making changes verify
correctness often!

You cannot verify
correctness too often!

 All parallel regions should contain a loop directive

 Fortran assumed size (A(*)) and C pointers must be shaped

 Always use ‘:’ when shaping with an entire dimension (i.e.
A(:,1:2))

 Host_data probably requires waits when combined with
auto_async_(kernels|all)

 Should start with auto_async_none

 Update (*) if(is_present(*)) can make code more composable

34

 Pretty much the analog of OpenACC tips!

 Start with “target team distribute”

 …

35

 Deep copy

 Selective deep copy

 Structure shaping

Extensions

36

37

 OpenACC supports a “flat” object model
 Primitive types
 Composite types without allocatable/pointer members

struct {

 int x[2]; // static size 2

} *A; // dynamic size 2

#pragma acc data copy(A[0:2])

Host Memory: A[0].x[0] A[0].x[1] A[1].x[0] A[1].x[1]

dA[0].x[0] dA[0].x[1] dA[1].x[0] dA[1].x[1] Device Memory:

38

 Non-contiguous transfers

 Pointer translation
struct {

 int *x; // dynamic size 2

} *A; // dynamic size 2

#pragma acc data copy(A[0:2])

Host Memory:

Device Memory:

A[0].x A[1].x x[0] x[1] x[0] x[1]

39

 Non-contiguous transfers

 Pointer translation
struct {

 int *x; // dynamic size 2

} *A; // dynamic size 2

#pragma acc data copy(A[0:2])

Host Memory:

Device Memory:

Shallow Copy

dA[0].x dA[1].x

A[0].x A[1].x x[0] x[1] x[0] x[1]

40

 Non-contiguous transfers

 Pointer translation
struct {

 int *x; // dynamic size 2

} *A; // dynamic size 2

#pragma acc data copy(A[0:2])

Host Memory:

Device Memory:

A[0].x A[1].x x[0] x[1] x[0] x[1]

dA[0].x dA[1].x x[0] x[1] x[0] x[1]

Deep Copy

41

 Re-write application
 Use “flat” objects

 Manual deep copy
 Issue multiple transfers
 Translate pointers

 Compiler-assisted deep copy
 Automatic for fortran

 -hacc_models=deep_copy
 Dope vectors are self describing

 OpenACC extensions for C/C++
 Pointers require explicit shapes

Appropriate
for CUDA

Appropriate
for OpenACC

42

 Currently works for C/C++

 Portable in OpenACC 2.0, but not usually practical

struct A_t {

 int n;

 int *x; // dynamic size n

};

...

struct A_t *A; // dynamic size 2

/* shallow copyin A[0:2] to device_A[0:2] */

struct A_t *dA = acc_copyin(A, 2*sizeof(struct A_t));

for (int i = 0 ; i < 2 ; i++) {

 /* shallow copyin A[i].x[0:A[i].n] to "orphaned" object */

 int *dx = acc_copyin(A[i].x, A[i].n*sizeof(int));

 /* fix acc pointer device_A[i].x */

 acc_memcpy_to_device(&dA[i].x, &dx, sizeof(int*));

}

43

 No aliases on the accelerator

 Must be contiguous

 On or off – no “selective” deep copy

 Only works for Fortran

type A_t

 integer,allocatable :: x(:)

end type A_t

...

type(A_t),allocatable :: A(:)

...

! shallow copy with -hacc_model=no_deep_copy (default)

! deep copy with -hacc_model=deep_copy

!$acc data copy(A(:))

44

 a.iptr is found on device so fixup value with device pointer

 If object is not present than no fixup and no error, “user selective”

typedef struct {

 int *iptr;

} iptr_t;

iptr_t a;

a.iptr = malloc(8);

acc_copyin(a.iptr, 8);

...

! shallow copy with -hacc_model=no_deep_copy (default)

! deep copy “fixup” with -hacc_model=deep_copy

#pragma acc data copy(a)

45

 Each object must shape it’s own pointers

 Member pointers must be contiguous

 No polymorphic types (types must be known statically)

 Pointer association may not change on accelerator (including allocation/deallocation)

 Member pointers may not alias (no cyclic data structures)

 Assignment operators, copy constructors, constructors or destructors are not invoked

struct A_t {

 int n;

 int *x; // dynamic size n

#pragma acc declare shape(x[0:n])

};

...

struct A_t *A; // dynamic size 2

...

/* deep copy */

#pragma acc data copy(A[0:2])

46

extern int size_z();

int size_y;

struct Foo

{

 double* x;

 double* y;

 double* z;

 int size_x;

 // deep copy x, y, and z

 #pragma acc declare shape(x[0:size_x], y[1:size_y-1], z[0:size_z()])

};

type Foo

 real,allocatable :: x(:)

 real,pointer :: y(:)

 !$acc declare shape(x) ! deep copy x

 !$acc declare unshape(y) ! do not deep copy y

end type Foo

 Library
 Support for type descriptors

 Compiler
 Automatic generation of type descriptors for Fortran

 Compiler flag to enable/disable deep copy
 Released in CCE 8.1
 Significant internal testing, moderate customer testing

 Directive-based generation of type descriptors for C/C++
 Planned for release in CCE 8.2
 Limited preliminary internal testing

 Language
 Committee recognizes the utility and need
 Will revisit after OpenACC 2.0

 47

 Directive based programming models are progressing

 OpenACC

