~“Advanced Scenegraph Rendering Pipeline
Markus Tavenrath - NVIDIA - matavenrath@nvidia.com
Christoph Kubisch - NVIDIA - ckubisch@nvidia.com

http://www.gputechconf.com/page/home.html

DONRGOGUCHiON ScencGraph SceneTree Shapelist Renderer
SceneGraph Rendering N>

NVIDIA

= Traditional approach is render while ™=
traversing a SceneGraph

= Scene complexity increases
— Deep hierarchies, traversal expensive
— Large objects split up into a lot of

- - little pieces, increased draw call count
; — Unsorted rendering, lot of state
. changes

aw, = CPU becomes bottleneck when

e rendering those scenes Sy
> models courtesy of PTZC

Overview <3

| SceneTree © Shapelist
”
-

ShapelList
o © Renderer
e RendererCache

Ti Tansform Si Shape 3

SceneGraph N>

NVIDIA

= SceneGraph is DAG
= No unique path to a node

— Cannot efficiently cache path-dependent data per node

Traversal runs over 14 nodes for rendering.

Processed 6 Transform Nodes
— 6 matrix/matrix multiplications and inversions

Nodes are usually ,large‘ and not linear in memory

— Each node access generates at least one, most
likely cache misses

__',

: |

7 o
e 4

%

SceneTree construction >

NVIDIA.
= Observer based
synchronization
GO -> (GO0)
TO -> (TO)
TL -> ()
SO0 -> (S0)
Gl -> (G1)G1Y)
P —C T2 -> (T2)T2")
~ S1 -> (S1)S1Y)
e T3 => (T3)T3YV)
_ S2 -> (S2)82VY)

U)l—]l—]G)
R O O

<3

NVIDIA

SceneTree

» SceneTree has unique path to each
node

= Store accumulated attributes like
transforms or visibility in each Node

» Trade memory for performance
— 64-byte per node, 100k nodes ~6MB

.. “ — Transforms stored separate vector

= Traversal still processes 14 nodes.

- -
P S
]
o 6
e
- 5

SceneTree invalidate attributes cache <=

NVIDIA

= Keep dirty flags per node

= Keep dirty vector per flag

» SceneGraph change notifications
invalidated nodes

— If not dirty, mark dirty and add to
dirty vector

— O(1) operation, no sorting required
upon changes

= Before rendering a frame process

== Dirty vector dirty vector

. X X J 7

SceneTree validate attribute cache <3

NVIDIA

= Walk through dirty vector
— Node marked dirty -> search top dirty
— Validate subtree from top dirty

= Validation example
— T3 dirty, traverse up to root node
= T3 top dirty node, validate T3 subtree
— T3¢ dirty, traverse up to root node

““ = T1 top dirty node, validate T1 subtree

- — T1 not dirty
=3 Dirtyvector No work to do

R

]
A Ay

SceneTree to ShapelList <3

NVIDIA.

» Add Events for ShapeList generation
— addShape(Shape)
— removeShape(Shape)

' ShapelList

G Gowp Ti Tansform Si Shape 9

Summary

» SceneGraph to SceneTree synchronization
— Store accumulated data per node instance

» SceneTree to Shapelist synchronization
— Avoid SceneTree traversal

= Next: Efficient data structure for renderer based on
ShapelList

<3

NVIDIA

10

Renderer Data Structures

v -
g

-\.'*-—1.._‘
v
=
‘:--.‘- =
e P ”
L e
..
:

>

Example Parameter Grouping >

NVIDIA.

- Introduction SceneGraph SceneTree Shapelist [SNRGAGEIEHINY
Rendering structures >

NVIDIA

shapelist

,colored’

Shapes colored* @ ,colored* ,colored*
% ~ Group colored /[\

Shapes
=T textured

_ Sort by ParameterData > 13

ParameterData Cache <3

NVIDIA

» Cache is a big char[] with all ParameterData.

= ParameterData are sorted by first usage.
» Parameters are converted to Target-API datatype, i.e.

~ — Int8 to int32, TextureHandle to bindless texture...

= " Updating parameters is only playback of data in memory,
~—_ no conditionals.

P

=+ = Filter for used parameters to reduce cache size
14

- Introduction SceneGraph SceneTree Shapelist [IRENASIEEINEN
Vertex Attribute Cache <3

NVIDIA

» Big char[] with vertex attribute pointers
— Bindless pointers, VBOs or VAB streams

» Each set of attributes stored only once

- :

>~ » Ordered by first usage

=, " Attributes required by program are known

e] . .

e — Store only used attributes in Cache

i; — Useful for special passes like depth pass where only pos is
required

15

Renderer Cache complete .S,%A

| —
A
(L~

.o foreach (shape) {

] 1f (visible (shape)) {
‘4E{f 1f (changed(parameters)) render (parameters);
gff'f'é 1f (changed(attributes)) render (attributes);
> ; render (shape) ;

o B

16

Achievements <3

NVIDIA

= CPU boundedness improved (application)

— Recomputation of attributes (transforms) _

— Deep hierarchies: traversal expensive _

— Unsorted rendering, lot of state changes _

» CPU boundedness remaining (OpenGL usage)_

— Large objects split up into a lot of little pieces, -
increased draw call count

17

Enabling Hardware Scalability ,f,%A

= Avoid data redundancy i

— Data stored once, referenced multiple times
— Update only once (less host to gpu transfers)

» Increase batching potential
— Further cuts api calls
— Less driver CPU work

* Minimize CPU/GPU interaction
— Allow GPU to update its own data
— Lower api usage when scene is changed little
— E.g. GPU-based culling

18

OpenGL Research Framework >

NVIDIA.

model courtesy of PTC

» Avoids classic SceneGraph design

= Geometry
— Vertex/IndexBuffer
— BoundingBox
— Divided into parts (CAD features)

= Material
» Node Hierarchy
= Object
— Node and Geometry reference

— For each Geometry part
= Material reference = 700 geometries, 128 materials

= Enabled state = 2000 objects

= 99000 total parts, 3.8 Mtris, 5.1 Mverts

19

Performance baseline <3

NVIDIA

= Kepler Quadro K5000, i7

» vbo bind and drawcall per part, i.e. 99 000
drawcalls

scene draw time > 38 ms (CPU bound)

» vbo bind per geometry, drawcalls per part
scene draw time > 14 ms (CPU bound)

= All subsequent techniques raise perf significantly

scene draw time < 6 ms

1.8 ms with occlusion culling

20

Drawcall Reduction ©

NVIDIA

XX ‘

— Single drawcall for many distinct objects

= MultiDraw (1.x)
— Render ranges from current VBO/IBO

— Reduces overhead for low complexity objects

= ARB_draw_indirect (4.x)

DrawElementsIndirect

= ARB_multi_draw_indirect Cluint counts
. . GLuint instanceCount;
— Store drawcall information on GPU or HOST GLuint firstIndex;
. GLint baseVertex;
— Let GPU create/modify GPU buffers GLuint baseInstance;

21

Drawing Techniques

— All use multidraw capabilites to
render across gaps

— BATCHED use CPU generated list of
combined parts with same state

= Object‘s part cache must be rebuilt
based on material/enabled state

— INDIVIDUAL stay on per-part level

= No caches, can update assignment or
cmd buffers directly

<3

NVIDIA

E DR EAB

Parts with different materials in geometry

EN E3nE N

Grouped and ,,grown” drawcalls

Single call, encode material/matrix
assignment via vertex attribute

22

Parameters <2

= Group parameters by frequency of change

» Generating shader strings allows different storage
backend for ,,uniforms*

Effect "Phong {
eroup pnarertat (many) o - = OpenGL 2 uniforms
vecd "diffuse"
vec4d "specular" - u OpenGL 3,4 bUfferS
}
Group ,view" (few) { :
Mera” viawpros i - = NVIDIA bindless technology...
}

Group ,,object" (many) {
mat4 ,,worldTM,,

Code ...

Parameters <3

NVIDIA
[uniform mat4 worldMatrices[2];]
" GLZ approaCh: [uniform vec4 materialData[8];]
— Avoid many small #define matrix _world worldMatrices[0]
uniforms #define matrix worldIT worldMatrices[1]
. #define material diffuse materialData[9]
i Arrays Of umforms, #define material emissive materialData[1]

grouped by frequency of #define material_gloss materialData[2].x
Update, t]ghtlY'paCked // GL3 can use floatBitsToInt and friends

// for free reinterpret casts within
// macros

wPos = matrix_world * oPos;

// in fragment shader
color = material diffuse +
material emissive;

24

Parameters

= GL4 approach:

— TextureBufferObject
(TBO) for matrices

— UniformBufferObject
(UBO) with array data
to save costly binds

— Assignment indices
passed as vertex
attribute

in vec4 oPos;

é)

uniform samplerBuffer matrixBuffer;

\,

AL

uniform materialBuffer {
Material materials[512];

s

\
>

N

in ivec2 vAssigns;
flat out ivec2 fAssigns;

. J/

// in vertex shader
fAssigns = vAssigns;

worldTM = getMatrix (matrixBuffer,
VAssigns.x);

wPos = worldTM * oPos;

// in fragment shader
color = materials[fAssigns.y].color;

<3

NVIDIA

25

OpenGL 4.x approach >

NVIDIA

setupSceneMatrixAndMaterialBuffer (scene);

foreach (obj in scene) {
if (isVisible(obj)) {

setupDrawGeometryVertexBuffer (obj);

// 1terate over different materials used
— foreach (batch in obj.materialCaches) {

[glVertexAttribI2i (indexAttr, batch.materiallndex, matrixIndex);]

glMultiDrawElements (GL_TRIANGLES, batch.counts, GL _UNSIGNED INT ,
batch.offsets,batched.numUsed);

26

Per drawcall vertex attribute <3

NVIDIA
glvertexAttribDivisor == : VArray[gl VertexID + baseVertex]
glvertexAttribDivisor 1= @ : VArray[gl InstanceID / VDivisor + baseInstance]
VArray|[0/ 1 + baselnstance]
MultiDrawlIndirect | ... A
Buffer instanceCount = 1 instanceCount = 1
baseInstance = 0 baseInstance = 1

Material & Matrix Index

VertexBuffer (divisor:1) baseinstance = 1

vertex attributes
fetched for last
vertex in second
drawcall

Position & Normal :
Vertexgufer (divisor0) MMMEEEEEEEEEEEN

27

OpenGL 4.2+ indirect approach <3

NVIDIA

foreach (obj in scene.objects) {

// instead of glVertexAttribI2i calls and a loop
// we use the baseInstance for the attribute

// bind special assignment buffer as vertex attribute
glBindBuffer (GL_ARRAY BUFFER, obj->assignBuffer);
glVertexAttribIPointer (indexAttr, 2, GL _INT, . . .);
g _/
// draw everything in one go
glMultiDrawElementsIndirect (GL_TRIANGLES, GL_UNSIGNED INT,
obj->indirectOffset, obj->numIndirects, 0);

28

Vertex Setup N>

NVIDIA

/* setup once, similar to glVertexAttribPointer
- 1 1 1 but with relative offset last */
ARB—VerteX—attr]b—b]nd]ng glVertexAttribFormat (ATTR_NORMAL, 3,
(VAB) GL_FLOAT, GL_TRUE, offsetof(Vertex,normal));
glVertexAttribFormat (ATTR_POS, 3,
GL_FLOAT, GL_FALSE, offsetof(Vertex,pos));
// bind to stream

glVertexAttribBinding (ATTR_NORMAL, ©);
— Separates format from data glVertexAttribBinding (ATTR_POS, @);

— Bind mUlthle vertex [// switch single stream buffer]

— Avoids many buffer changes

attributes to one buffer glBindvertexBuffer (@, bufID, @, sizeof(Vertex))
| NV vertex buffer Uniﬁed // NV_vertex_buffer_unified_memory

// enable once and set stride

memory (VBUM) glEnableClientState (GL_VERTEX...NV);...

glBindVertexBuffer (0, 0, 0, sizeof(Vertex));

- AllOWS Very faSt SW]tCh]ng // switch single buffer via pointer

through GPU pointers glBufferAddressRangeNV (GL_VERTEX...,@,bufADDR,
bufSize);

AL

NV_bindless_multidraw_indirect .

NVIDIA.

— Vertex/Index setup inside MultiDrawlIndirect command

— 1000 - ~ 2400 drawcalls, GL4 BATCHED style
>
u 800 - NV _bindless_multidraw indirect
S one GL call to draw entire scene
§ 600 -
o GPU benefit depends on triangles
LE) 400 - per drawcall (> ~ 500)
£ A
o 200 A [1
=
|_

0 -

\':10) VAB VAB+VBUM BINDLESS BINDLESS

. . INDIRECT HOST INDIRECT GPU

Lower s Effect on CPU time VAB+VBUM VAB+VBUM

Better 30

6000 -

5000 f

Time in microseconds [us]

N
o
o
o

1000 H

= Lower is
s Better

4000 H

3000 f

Bindless (green) always reduces CPU, and

may help framerate/GPU a bit @
nNviDIA
99.000 | 2.400 hw drawcalls
g 2.000 | 2.400 sw drawcalls

4

K = Kepler 5000, regular VBO
KB = Kepler 5000, VBUM + VAB

l GPU
. I |. I | CPU
K KB K KB K KB K (]
GL4 INDIRECTHOST GL4 INDIRECTGPU GL4 BATCHED GL2 BATCHED
INDIVIDUAL INDIVIDUAL 31

MultiDrawlndirect achieves almost 20 Mio drawcalls per Scene-dependent!

second (2000 VBO changes, ,,only“ 1/3 perf lost). INDIVIDUAL could be as fast :
GPU-buffered commands save lots of CPU time if enough work per drawcall @
6000 nviDIA.
99.000 | 2.400 hw drawcalls
2.000 | 2.400 sw drawcalls
5000 -
— 4000 \l
E K = Kepler 5000, regular VBO
g KB = Kepler 5000, VBUM + VAB
g 3000 -
E
2000
1000 - GPU
I CPU
0
K KB K KB K KB K KB
¥~ Lower is GL4 INDIRECTHOST GL4 INDIRECTGPU GL4 BATCHED GL2 BATCHED
& Better INDIVIDUAL INDIVIDUAL 32

GL2 uniforms beat paletted UBO a bit in GPU, but are slower on >Cc€ne-dependent!

CPU side. (1 glUniform call with 8x vec4, vs indexed UBO) GL4 better when more .
materials changed per obJect@

6000 1 nviDIA.

99.000 | 2.400 hw drawcalls

2.000 | 2.400 sw drawcalls
5000 A

N
(]
o
o

K = Kepler 5000, regular VBO
KB = Kepler 5000, VBUM + VAB

N
—

KB K KB

3000 f

Time in microseconds [us]

N
o
o
o

GPU

1000 H

CPU

K
- Lower is GL4 INDIRECTHOST GL4 INDIRECTGPU GL4 BATCHED GL2 BATCHED

KB K KB

K

33

| Better INDIVIDUAL INDIVIDUAL

>)
Recap ,f,,zm

= Share geometry buffers for batching

= Group parameters for fast updating : ‘ ‘

* MultiDraw/Indirect for keeping objects
independent or remove additional loops EEEEEN

— baselnstance to provide unique HEE B =l
index/assignments for drawcall EEEEEE

= Bindless to reduce validation
overhead/add flexibility

34

GPU Culling Basics N>
A X
= GPU friendly processing

— Matrix and bbox buffer, object buffer '- L1

— XFB/Compute or ,,invisible“ rendering .

— Vs. old techniques: Single GPU job for ALL objects!
= Results

— ,,Readback* GPU to Host

= Can use GPU to pack into bit stream
buffer cmdBuffer{

- ”IndireCt“ GPU to GPU Command cmds[];

}s
= Set Drawlndirect‘s instanceCount to O or 1

cmds[obj].instanceCount = visible;

9,1,0,1,1,1,0,0,0

35

Algorithm by
Evgeny Makarov, NVIDIA

<3

NVIDIA

Occlusion Culling

depth &
buffer /

Passing bbox fragments
enable object

* OpenGL 4.2+
— Depth-Pass

— Raster ,,invisible® bounding boxes
= Disable Color/Depth writes

// GLSL fragment shader
// from ARB_shader_image load_store
layout(early fragment_ tests) in;

= Geometry Shader to create the three

..] buffer visibilityBuffer
visible box sides y {

int visibility[];
= Depth buffer discards occluded fragments 1>
(earlyz---) flat in int objID;

. S,
= Fragment Shader writes output: V\?;sigiﬂé;‘%objm] .y
visible[objindex] = 1 }

// buffer would have been cleared
// to @ before

36

frame: f—1 invisible
™
Temporal Coherence ... N>
O
= Exploit that majority of objects don‘t change
much relative to camera
. frame: f
= Draw each object only once (vertex/drawcall-
bound) last visible
— Render last visible, fully shaded camera
moved
(last)
bboxesp assdepth bboxes occluded
— Test all against current depth: - (visible) =
(visible)

— Render newly added visible:

none, if no spatial changes made
(~last) & (visible)

new visible

— (last) = (visible) 37

Culling Readback vs Indirect <3

NVIDIA
In the ,,draw new visible” phase indirect cannot
\ benefit of ,,nothing to setup/draw” in advance,

\ For readback results, CPU has to
still processes ,,empty” lists

wait for GPU idle

33% faster with

37% faster with \ culling 37% faster with
culling

N

Ul

-

o
|

@ culling
A ~

2000

NV_bindless_
multidraw_indirect

Time in microseconds [us]

1500 A
saves CPU and bit of
GPU time
1000 A
Scene-dependent,
500 - i.e. triangles per
_ _ drawcall and # of
S i Ié(;ﬁeerrw 0 - invisible”
ot readback indirect NVindirect 38

GL4 BATCHED style

Culling Results N>

NVIDIA

» Temporal culling very useful for object/vertex-boundedness
— Can also apply for Z-pass...
» Readback vs Indirect

— Readback variant ,,easier* to be faster (no setups...), but syncs!

— NV_bindless_multidraw benefit depends on scene (VBO changes
and primitives per drawcall)

» Working towards GPU autonomous system

— (NV_bindless)/ARB_multidraw_indirect as mechanism for GPU
creating its own work, research and feature work in progresss

39

glFinish(); .

NVIDIA

= Thank you!

— Contact

= ckubisch@nvidia.com

= matavenrath@nvidia.com

40

mailto:ckubisch@nvidia.com
mailto:matavenrath@nvidia.com

<3

NVIDIA

NVIDIA Bindless Technology

» Family of extensions to use // GLsL with true pointers
. uniform MyStruct* mystructs;
native handles/addresses

= NV_vertex_buffer_unified_memory // API

glUniformui64NV (bufferlLocation,
= NV_bindless_multidraw_indirect bufferADDR);

- NV_Shader_bUffer_load/Store texHDL = glGetTextureHandleNV (tex);
// later instead of glBindTexture

— Pointers in GLSL glUniformHandleui64NV (texLocation,
, texHDL)
= NV_bindless_texture

. o // GLSL

— No more unit restrictions // can also store textures in resources
.. uniform materialBuffer {

— References inside buffers sampler2D manyTextures [LARGE];

}

41

2500

Culling
Readback
VS

A

Indirect 2000

Time in microseconds

1500

1000

500

For readback results, CPU has to
wait for GPU idle

432 fps with culling

315 without

Readback Readback

GPU

Nothing ,new” to draw, but CPU doesn‘t
know, still setting things up, GPU runs @Dz

thru ,empty” cmd buffer NVIDIA

387 fps with culling
289 without

CPU

Indlrect
GPU

429 fps with culling
313 without

m 6. Draw New Visible

® 5. Update Internals
m 4. Occlusion Cull
m 3. Draw Last Visible

m 2. Update Internals
® 1. Frustum Cull

’ Special bindless indirect

version can save lots of

‘ CPU and a bit GPU costs
for drawing the scene

Indirect NVIndlrectNVIndirect with a single big cmd

CPU

GPU

CPU buffer 42

