
Category: Computational physiCs
poster

Cy14
contact name

Lorena Barba: labarba@bu.edu

Christopher D Cooper, Lorena A Barba

Γ

Ω1, ε1, φ1

Ω2, ε2, φ2

qiqk

qk+1

qk+2

qk−1

qk−2

Γj

Γj+1

Γj−1

Γi

PyGBe: Python on the surface, GPUs at the heart.
BEM solver for Electrostatics of Biomolecules

Boston University

G
PU

 T
ec

hn
ol

og
y

C
on

fe
re

nc
e,

 M
ar

ch
 2

0
13

What’s new? PyGBe

Want more? Papers and software are online

Results: Lysozyme molecule
One of the most important quantities obtained using this model is the solvation free
energy, which is widely used to study proteins, e.g., to obtain binding affinities.

In this example, we show the results of running PyGBe with a lysozyme molecule,
using increasingly refined surface meshes. The numbers of panels vary from 14,000
to 215,000 (approximately).

All the codes developed in our group are free (like free beer) and open source.
To download them, follow the links from our group website:
http://barbagroup.bu.edu

Acknowledgement:
We are grateful to Jaydeep Bardhan for his help with this work.

The PyGBe code (pronounced ‘pig-bee’) solves the linearized Poisson-Boltzmann
equation using a boundary element method,BEM. The underlying dense systems
are solved using a Krylov-subspace method, accelerated with a treecode to achieve
O(N log N) complexity.

The code presents a Python environment for the user, while computing all kernels
in CUDA (interfaced with PyCuda), for maximum ease of use, combined with high
performance on GPUs.

Model: Implicit solvent
The interaction between charges in a biological system are screened by the pres-
ence of water with dissolved ions. Treating electrostatic effects via the Debye-
Hücknel approximation with a Boltzmann distribution of charges, and combining
with the Poisson equation for the potential field, results in the model known as
“implicit solvent.”

The solvent-excluded surface defines an interface
between the region inside the protein and the
solvent area. The Poisson equation with point
charges applies inside the protein, with a low
dielectric. The Poisson-Boltzmann equation
(linearized) applies in the solvent area, with a
high dielectric corresponding to water.

The differential system of equations is thus:

The differential system of equations can be written in integral form, by taking convo-
lution with the free-space Green’s function of the Laplace and linearized Poisson-
Boltzmann equations. We use the boundary element method, BEM, to solve the
resulting system of integral equations.

We discretize the protein-solvent interface in
panels, assume a distribution of the potential
and its normal derivative over each panel,
and then use colocation to generate a linear
system.

Method: Boundary elements

Γ

Ω1, ε1, φ1

Ω2, ε2, φ2

qi

∇2φ1(r) = −
∑

i

qi
ε1
δ(r, ri) in solute (Ω1)

∇2φ2(r) = κ2φ2(r) in solvent (Ω2)

φ1 = φ2 on interface Γ

ε1
∂φ1

∂n
= ε2

∂φ2

∂n

2πφ1(ri)−
Np∑

j=1

∂φ1

∂n
(rj)

∫

Γj

1

|ri − r′|dΓ
′ +

Np∑

j=1

φ1(rj)

∫

Γj

∂

∂n

[
1

|ri − r′|

]
dΓ′ =

Nc∑

k=0

qk
ε1

1

|ri − rk|

2πφ1(ri) +

Np∑

j=1

∂φ1

∂n
(rj)

ε1
ε2

∫

Γj

e−κ|ri−r′|

|ri − r′| dΓ′ −
Np∑

j=1

φ1(rj)

∫

Γj

∂

∂n

[
e−κ|ri−r′|

|ri − r′|

]
dΓ′ = 0.

Details: Validation technical report

Validation of the PyGBe code for Poisson-Boltzmann equation with boundary
element methods. Christopher Cooper, Lorena A. Barba. figshare.
http://dx.doi.org/10.6084/m9.figshare.154331

Code: GPU-capable, Open-source under MIT license
All of the user-visible code in PyGBe is Python, and we interface to Cuda via PyCuda for
the most computationally intensive parts of the algorithm. The parts that run
on GPU are the following:

��Generation of the right-hand-side of the linear system.
��Treecode kernels: particle-to-particle & multipole-to-particle.
��Calculation of the reaction potential at the locations of charges.

The code is available under the MIT open-source license, one
of the most permissive. The code repository is on
Bitbucket:
https://bitbucket.org/cdcooper/pygbe

Performance: Treecode on GPU
The performance of PyGBe is dominated by the treecode evaluations for the matrix-
vector multiplications in the linear solver. The timing breakdown below shows the
two most computationally intensive parts of the treecode, as they were moved to
the GPU.

The key to obtaining this performance on the GPU was the design of the data layout
to obtain maximum parallelism and bandwidth usage. To improve runtime efficiency,
some parts of PyGBe were written in C++ and wrapped in Python. Also, in the CPU
version of the code, the multipole-to-particle and particle-to-particle interactions of
the treecode were written in C++ and wrapped in Python.

All tests were run on a single Intel Xeon 2.67 GHz CPU core, or an NVIDIA Tesla
C2075 GPU.

