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CONTRIBUTION:

Implement Heston’s stochastic volatility
model with Andersen’s QFE discretisation using
(Quasi-random numbers for variance reduction.

Accelerate this model using:

CUDA GPGPU AWS HPC | Matlab PCT GPGPU | Techila Azure Cloud FPGA
2 Tesla M2050 GPU 2 Tesla M2090 GPU 356 cores @Q1.6GHz | 4 x Max3 cards

Evaluate Improvement in acceleration.

(E-Scheme DISCRETISATION

Leif Andersen |[1| proposed a new scheme
to  discretise  the stochastic  volatility
and the price of an underlying asset.

Require: The present value for the variance, ‘A/(t)
Ensure: The value for the variance in the subse-
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6 Compute a < 1:[22
7: (GGenerate Normal random variate Zy
8 return V(t+ At) « a(b+ Zy)?
9: else
10:  Compute p < z: c [0,1)
11:  Compute 3 < 1;19
12: (GGenerate Uniform random variate Uy
13: if 0 < Uy < p then
14: return V(¢ + At) < 0
15: else
16: return V(t + At) + 7 'In (11__Upv)
17: end if
18: end if
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Quasi-Random VARIATES

Such numbers can be sampled from the so called
"low discrepancy" sequences. A sequence’s
discrepancy is a measure of its uniformity and is
defined by the following definition [see Levy|2]].
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Figure 1: The Niederreiter |3| sequence is gener-

ated in MATLAB with the NAG functions g05yl

and g05ym

TECHILA

Need for Computing Capacity
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Techila Technologies provided a middleware
layer for parallel distribution. The grid com-
prised of 354 cores clocked at 1.6GHz on
Microsoft’s Azure cloud. The only change
required in the code was the substitution of the
for command with the cloudfor one.

MATLAB GPGPU

The Heston model was ported to the GPU archi-
tecture by use of Matlab’s Parallel Computing
Toolbox. All functions that are executed on the
GPGPU card are within the gpuArray names-
pace.

()

% Assign each worker to a different GPU

spmd
gpuDevice(labindex) ;
end

(..))

1% Main Monte Carlo loop

for step = 1: steps
Znl = parallel.gpu.GPUArray.randn (

paths ,1) ;
/n2 = parallel .gpu.GPUArray.randn (
paths ,1) ;
Uv = parallel .gpu.GPUArray.rand (paths
1)

|S,V|=arrayfun (QmyGPUFun, Znl,Zn2,Uv
.S ,V,theta , kappa, dt, xi,r,h KO,
K1,K2,K3,K4) ;

end

7% Main Monte Carlo loop
cloudfor pth = 1: paths
%cf:force:largedata

Payoff(pth) = max(S(pth,end)—K,0) ;
% Call option

cloudend
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DATAFLOW ON FPGA

What Maxeler provide is a way to create
workers on an FPGA that are highly spe-
cialised, and extremely quick at conducting
a specific operation. The kernels are large
synchronous dataflow pipelines that implement
the mathematics and the control of the prob-
lem. They are asynchronously coupled to other
kernels and I/O sources and sinks (DRAM,
PCle, inter-chip links, ) by the manager.
The overall process is as quick as the flow.
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PRECISION and ACCURACY

The QE-scheme has high accuracy, compared
to the analytic price calculated with the NAG
function, and converges stably and quickly to
a low standard error. The asset’s variance is
strictly positive and strongly repelant from zero.

Monte Carle Heston

Flgure 2: Matlab figures for the Monte Carlo simulation of
the Heston model. The parameters for this simulation are: Sp =
100, Vg = 0.04, K = 100,p = —-0.2,£ = 0.2,0 = 0.04,x = 1.5,T =
5.0, NoSteps = T x 250, NoPaths = 1000, A = 0, r» = 0.0, and g = 0.0.
For the bottom two plots the S price is perturbed in the prices
Sop = [20 30 Ce 100 Cee 170 180].

RESULTS

All platforms seem to converge to the same
acceleration boundary. This is however with a
different cost for each one of them. Total cost
of ownership and ease of development should
be taken into account. For code samples see |4

Comparative Analysis of different acceleration platforms
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CONCLUSIONS

1. FPGASs fill the pipe early on and plateau at
a certain acceleration; needs to scale horizon-
tally with additional cards

2. FPGAs had the best acceleration; high devel-
opment friction

3. Easiest implementation was with Techila, fol-
lowed by Matlab PCT

4. Performance via middle-ware suffers at small
path number sizes, but catches up eventually



