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Contribution:
Implement Heston’s stochastic volatility
model with Andersen’s QE discretisation using
Quasi-random numbers for variance reduction.

Accelerate this model using:
CUDA GPGPU AWS HPC Matlab PCT GPGPU Techila Azure Cloud FPGA

2 Tesla M2050 GPU 2 Tesla M2090 GPU 356 cores @1.6GHz 4 × Max3 cards

Evaluate Improvement in acceleration.

QE-Scheme Discretisation
Leif Andersen [1] proposed a new scheme
to discretise the stochastic volatility
and the price of an underlying asset.

Require: The present value for the variance, V̂ (t)
Ensure: The value for the variance in the subse-

quent time-step, V̂ (t+∆t)

1: Compute m ← θ + (V̂ (t)− θ)e−κ∆t

2: Compute s2 ← V̂ (t)ξ2e−κ∆t

κ
(1−e−κ∆t)+ θξ2

2κ
(1−

e−κ∆t)2

3: Compute ψ ← m2

s2

4: if ψ ≤ ψc then
5: Compute b ← 2ψ−1 − 1+

√
2ψ−1

√
2ψ−1 − 1

6: Compute a ← m
1+b2

7: Generate Normal random variate ZV

8: return V̂ (t+∆t) ← a(b+ ZV )2

9: else
10: Compute p ← ψ−1

ψ+1
∈ [0, 1)

11: Compute β ← 1−p
m

12: Generate Uniform random variate UV

13: if 0 ≤ UV ≤ p then
14: return V̂ (t+∆t) ← 0
15: else
16: return V̂ (t+∆t) ← β−1 ln

(
1−p

1−UV

)

17: end if
18: end if

Quasi-Random Variates
Such numbers can be sampled from the so called
"low discrepancy" sequences. A sequence’s
discrepancy is a measure of its uniformity and is
defined by the following definition [see Levy[2]].
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Niedereitter Quasi Random Pseudo Random

Figure 1: The Niederreiter [3] sequence is gener-
ated in MATLAB with the NAG functions g05yl
and g05ym

MATLAB GPGPU
The Heston model was ported to the GPU archi-
tecture by use of Matlab’s Parallel Computing
Toolbox. All functions that are executed on the
GPGPU card are within the gpuArray names-
pace.

1 ( . . . )
% Assign each worker to a d i f f e r e n t GPU

3 spmd
gpuDevice ( lab index ) ;

5 end
( . . . )

7 % Main Monte Carlo loop
f o r s tep = 1 : s t ep s

9 Zn1 = p a r a l l e l . gpu .GPUArray . randn (
paths , 1 ) ;

Zn2 = p a r a l l e l . gpu .GPUArray . randn (
paths , 1 ) ;

11 Uv = p a r a l l e l . gpu .GPUArray . rand ( paths
, 1 ) ;

[ S ,V]= arrayfun (@myGPUFun, Zn1 , Zn2 ,Uv
, S ,V, theta , kappa , dt , xi , r ,K0 ,
K1,K2,K3,K4) ;

13 end
( . . . )

Techila

Techila Technologies provided a middleware
layer for parallel distribution. The grid com-
prised of 354 cores clocked at 1.6GHz on
Microsoft’s Azure cloud. The only change
required in the code was the substitution of the
for command with the cloudfor one.

% Main Monte Carlo loop
2 c l oud f o r pth = 1 : paths

%c f : f o r c e : l a rg eda ta
4 ( . . . )

Payof f ( pth ) = max(S( pth , end )−K, 0 ) ;
% Cal l opt ion

6 ( . . . )
c loudend

Dataflow on FPGA
What Maxeler provide is a way to create
workers on an FPGA that are highly spe-
cialised, and extremely quick at conducting
a specific operation. The kernels are large
synchronous dataflow pipelines that implement
the mathematics and the control of the prob-
lem. They are asynchronously coupled to other
kernels and I/O sources and sinks (DRAM,
PCIe, inter-chip links, ) by the manager.
The overall process is as quick as the flow.

Precision and Accuracy
The QE-scheme has high accuracy, compared
to the analytic price calculated with the NAG
function, and converges stably and quickly to
a low standard error. The asset’s variance is
strictly positive and strongly repelant from zero.
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Figure 2: Matlab figures for the Monte Carlo simulation of
the Heston model. The parameters for this simulation are: S0 =
100, V0 = 0.04, K = 100, ρ = −0.2, ξ = 0.2, θ = 0.04, κ = 1.5, T =
5.0, NoSteps = T ∗ 250, NoPaths = 1000, λ = 0, r = 0.0, and q = 0.0.
For the bottom two plots the S price is perturbed in the prices
S0 = [20 30 · · · 100 · · · 170 180].

Results
All platforms seem to converge to the same
acceleration boundary. This is however with a
different cost for each one of them. Total cost
of ownership and ease of development should
be taken into account. For code samples see [4]
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Comparative Analysis of different acceleration platforms

 

 

CUDA C++ (GPU)
Matlab PCT(GPU)
Techila Azure Cloud
Maxeler FPGA

Conclusions
1. FPGAs fill the pipe early on and plateau at

a certain acceleration; needs to scale horizon-
tally with additional cards

2. FPGAs had the best acceleration; high devel-
opment friction

3. Easiest implementation was with Techila, fol-
lowed by Matlab PCT

4. Performance via middle-ware suffers at small
path number sizes, but catches up eventually
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