
Category: Finance
poster

FI01
contact name

Christos Delivorias: christos@delivorias.me

AcceleratingFinancialModels
Christos Delivorias1, Erik Vynckier1, Peter Richtárik2, Martin Takáč2

1Scottish Widows Investment Partnership, 60 Morrison Street, Edinburgh EH3 8BE, UK
2School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3JZ, UK
Christos.Delivorias@swip.com, Erik.Vynckier@swip.com, Peter.Richtarik@ed.ac.uk, M.Takac@sms.ed.ac.uk

Contribution:
Implement Heston’s stochastic volatility
model with Andersen’s QE discretisation using
Quasi-random numbers for variance reduction.

Accelerate this model using:
CUDA GPGPU AWS HPC Matlab PCT GPGPU Techila Azure Cloud FPGA

2 Tesla M2050 GPU 2 Tesla M2090 GPU 356 cores @1.6GHz 4 × Max3 cards

Evaluate Improvement in acceleration.

QE-Scheme Discretisation
Leif Andersen [1] proposed a new scheme
to discretise the stochastic volatility
and the price of an underlying asset.

Require: The present value for the variance, V̂ (t)
Ensure: The value for the variance in the subse-

quent time-step, V̂ (t+∆t)

1: Compute m ← θ + (V̂ (t)− θ)e−κ∆t

2: Compute s2 ← V̂ (t)ξ2e−κ∆t

κ
(1−e−κ∆t)+ θξ2

2κ
(1−

e−κ∆t)2

3: Compute ψ ← m2

s2

4: if ψ ≤ ψc then
5: Compute b ← 2ψ−1 − 1+

√
2ψ−1

√
2ψ−1 − 1

6: Compute a ← m
1+b2

7: Generate Normal random variate ZV

8: return V̂ (t+∆t) ← a(b+ ZV)2

9: else
10: Compute p ← ψ−1

ψ+1
∈ [0, 1)

11: Compute β ← 1−p
m

12: Generate Uniform random variate UV

13: if 0 ≤ UV ≤ p then
14: return V̂ (t+∆t) ← 0
15: else
16: return V̂ (t+∆t) ← β−1 ln

(
1−p

1−UV

)

17: end if
18: end if

Quasi-Random Variates
Such numbers can be sampled from the so called
"low discrepancy" sequences. A sequence’s
discrepancy is a measure of its uniformity and is
defined by the following definition [see Levy[2]].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Niedereitter Quasi Random Pseudo Random

Figure 1: The Niederreiter [3] sequence is gener-
ated in MATLAB with the NAG functions g05yl
and g05ym

MATLAB GPGPU
The Heston model was ported to the GPU archi-
tecture by use of Matlab’s Parallel Computing
Toolbox. All functions that are executed on the
GPGPU card are within the gpuArray names-
pace.

1 (. . .)
% Assign each worker to a d i f f e r e n t GPU

3 spmd
gpuDevice (lab index) ;

5 end
(. . .)

7 % Main Monte Carlo loop
f o r s tep = 1 : s t ep s

9 Zn1 = p a r a l l e l . gpu .GPUArray . randn (
paths , 1) ;

Zn2 = p a r a l l e l . gpu .GPUArray . randn (
paths , 1) ;

11 Uv = p a r a l l e l . gpu .GPUArray . rand (paths
, 1) ;

[S ,V]= arrayfun (@myGPUFun, Zn1 , Zn2 ,Uv
, S ,V, theta , kappa , dt , xi , r ,K0 ,
K1,K2,K3,K4) ;

13 end
(. . .)

Techila

Techila Technologies provided a middleware
layer for parallel distribution. The grid com-
prised of 354 cores clocked at 1.6GHz on
Microsoft’s Azure cloud. The only change
required in the code was the substitution of the
for command with the cloudfor one.

% Main Monte Carlo loop
2 c l oud f o r pth = 1 : paths

%c f : f o r c e : l a rg eda ta
4 (. . .)

Payof f (pth) = max(S(pth , end)−K, 0) ;
% Cal l opt ion

6 (. . .)
c loudend

Dataflow on FPGA
What Maxeler provide is a way to create
workers on an FPGA that are highly spe-
cialised, and extremely quick at conducting
a specific operation. The kernels are large
synchronous dataflow pipelines that implement
the mathematics and the control of the prob-
lem. They are asynchronously coupled to other
kernels and I/O sources and sinks (DRAM,
PCIe, inter-chip links,) by the manager.
The overall process is as quick as the flow.

Precision and Accuracy
The QE-scheme has high accuracy, compared
to the analytic price calculated with the NAG
function, and converges stably and quickly to
a low standard error. The asset’s variance is
strictly positive and strongly repelant from zero.

0 2 4 6 8 10 12 14

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Paths

S
ta

n
d

a
rd

 E
rr

o
r

Stardard error for the Monte Carlo simulation for increasing path sizes

Figure 2: Matlab figures for the Monte Carlo simulation of
the Heston model. The parameters for this simulation are: S0 =
100, V0 = 0.04, K = 100, ρ = −0.2, ξ = 0.2, θ = 0.04, κ = 1.5, T =
5.0, NoSteps = T ∗ 250, NoPaths = 1000, λ = 0, r = 0.0, and q = 0.0.
For the bottom two plots the S price is perturbed in the prices
S0 = [20 30 · · · 100 · · · 170 180].

Results
All platforms seem to converge to the same
acceleration boundary. This is however with a
different cost for each one of them. Total cost
of ownership and ease of development should
be taken into account. For code samples see [4]

1000 8000 64000 512000 4096000
1

5

27

98

260

566

767

A
c
c
e

le
ra

ti
o

n
 (

 N
u

m
b

e
r

o
f

ti
m

e
s
 f

a
s
te

r)

Number of Paths

Comparative Analysis of different acceleration platforms

CUDA C++ (GPU)
Matlab PCT(GPU)
Techila Azure Cloud
Maxeler FPGA

Conclusions
1. FPGAs fill the pipe early on and plateau at

a certain acceleration; needs to scale horizon-
tally with additional cards

2. FPGAs had the best acceleration; high devel-
opment friction

3. Easiest implementation was with Techila, fol-
lowed by Matlab PCT

4. Performance via middle-ware suffers at small
path number sizes, but catches up eventually

Bibliography

[1] L. Andersen, Efficient Simulation of the Hes-
ton Stochastic Volatility Model. Available at
SSRN: http://ssrn.com/abstract=946405,
2007.

[2] G. Levy, An introduction to quasi-random
numbers. http://bit.ly/13AUKVj, 2002.

[3] H. Niederreiter, Random number generation
and Monte Carlo method. In SIAM, 1992.

[4] C. Delivorias,
https://github.com/cmdel/mc-sim, 2012.

Project Contributors

