CASL: The Consortium for Advanced Simulation of Light Water Reactors
A U.S. Department of Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors

John A. Turner
Oak Ridge National Laboratory
Computer Science & Math Division
Virtual Reactor Integration Lead, CASL

NVIDIA GPU Tech. Conf.
San Jose, CA
May 15, 2012
What is a DOE Innovation Hub?

- **04/06/2009**: Secretary Chu proposes 8 Energy Innovation Hubs (idea pre-dates Chu)
 - modeled after research entities like the Manhattan Project (nuclear weapons), Lincoln Lab at MIT (radar), and AT&T Bell Labs (transistor)
 - highly-integrated & collaborative teams - solve priority technology challenges to national climate and energy goals
 - problems that have proven the most resistant to solution via the normal R&D enterprise
 - focused, spanning spectrum from basic research through engineering development to partnering with industry in commercialization
 - bring together expertise across the R&D enterprise (gov, academia, industry, non-profits)
 - $25M per yr for 5 years, with possible 5-yr extension

- **06/25/2009**: House bill did not approve any of the proposed Hubs
 - $35M in Basic Energy Sciences for the Secretary to select one Hub

- **07/09/2009**: Senate approves 3 of the proposed hubs, but at $22M
 - Fuels from sunlight (in EERE)
 - Energy efficient building systems (in EERE)
 - Modeling and simulation for nuclear energy systems (in NE)

- **10/01/2009**: Final bill out of conference matches Senate bill

- **01/20/2010**: FOA released, proposals due 03/08/2010

- **05/27/2010**: CASL selected, first funding arrived 07/01/2010
The Consortium for Advanced Simulation of Light Water Reactors (CASL)
The Consortium for Advanced Simulation of Light Water Reactors (CASL)

Core partners
Oak Ridge National Laboratory
Idaho National Laboratory
Sandia National Laboratories
Los Alamos National Laboratory
The Consortium for Advanced Simulation of Light Water Reactors (CASL)

Core partners
Oak Ridge National Laboratory
Idaho National Laboratory
Sandia National Laboratories
Los Alamos National Laboratory
University of Michigan
North Carolina State University
Massachusetts Institute of Technology
The Consortium for Advanced Simulation of Light Water Reactors (CASL)

Core partners
Oak Ridge National Laboratory
Idaho National Laboratory
Sandia National Laboratories
Los Alamos National Laboratory
University of Michigan
North Carolina State University
Massachusetts Institute of Technology
Tennessee Valley Authority
Electric Power Research Institute
Westinghouse Electric Company
The Consortium for Advanced Simulation of Light Water Reactors (CASL)

Core partners
Oak Ridge National Laboratory
Idaho National Laboratory
Sandia National Laboratories
Los Alamos National Laboratory
University of Michigan
North Carolina State University
Massachusetts Institute of Technology
Tennessee Valley Authority
Electric Power Research Institute
Westinghouse Electric Company

Individual contributors
ASCOMP GmbH
CD-adapco, Inc.
City University of New York
Florida State University
Imperial College London
Rensselaer Polytechnic Institute
Southern States Energy Board
Texas A&M University
University of Florida
University of Tennessee
University of Wisconsin
Worcester Polytechnic Institute
The Consortium for Advanced Simulation of Light Water Reactors (CASL)

Core partners
Oak Ridge National Laboratory
Idaho National Laboratory
Sandia National Laboratories
Los Alamos National Laboratory
University of Michigan
North Carolina State University
Massachusetts Institute of Technology
Tennessee Valley Authority
Electric Power Research Institute
Westinghouse Electric Company

Individual contributors
ASCOMP GmbH
CD-adapco, Inc.
City University of New York
Florida State University
Imperial College London
Rensselaer Polytechnic Institute
Southern States Energy Board
Texas A&M University
University of Florida
University of Tennessee
University of Wisconsin
Worcester Polytechnic Institute

Challenges
- High visibility
- Geographically-dispersed
- Diversity of experience
- Wide range of motivation / priorities
- Proprietary codes and data
- Role of commercial codes
- Export control
Nuclear Energy Overview
Source: Nuclear Energy Institute (NEI)

- World nuclear power generating capacity
 - 439 plants (U.S.- 104 plants in 31 states)
 - 373 GWe (U.S.- 100.7 GWe, 798.7 TWh in 2009)
 - ~90% capacity factor (>6 GWe added to grid)

- U.S. electricity from nuclear: 20.2%
 - One uranium fuel pellet provides as much energy as:
 - one ton of coal
 - 149 gallons of oil
 - 17,000 cubic feet of natural gas

- U.S. electricity demand projected to grow 25% by 2030
 - 2007: 3.99 TWh
 - 2030: 4.97 TWh

- Nuclear accounts for 73% of emission-free electricity in US
Anatomy of a Nuclear Reactor

Power: ~1170 MWe (~3400 MWth)

Containment Building: 115’ diameter x 156’ high steel / concrete

Pressure Vessel: 14.4’ diameter x 41.3’ high x 0.72’ thick alloy steel

Coolant: pressurized water (2250 psia), $T_{\text{in}} \sim 545^\circ \text{F}$, $T_{\text{out}} \sim 610^\circ \text{F}$, 134M lb/h (4 pumps)

Example: Westinghouse 4-Loop Pressurized Water Reactor (PWR)
Anatomy of a Nuclear Reactor

Core
- 11.1' diameter x 12' high
- 193 fuel assemblies
- 107.7 tons of UO$_2$ (~3-5% U$_{235}$)

Fuel Assemblies
- 17x17 pin lattice (14.3 mm pitch)
- 204 pins per assembly

Fuel Pins
- ~300-400 pellets stacked within 12' high x 0.61 mm thick Zr-4 cladding tube

Fuel Pellets
- 9.29 mm diameter x ~10.0 mm high

Fuel Temperatures
- 4140° F (max centerline)
- 657° F (max clad surface)

Example: Westinghouse 4-Loop Pressurized Water Reactor (PWR)

~51,000 fuel pins and over 16M fuel pellets in the core of a PWR
CASL mission is to improve reactor performance (initially currently-operating LWRs)

Power uprates
- 5–7 GWe delivered at ~20% of new reactor cost
- Advances in M&S needed to enable further uprates (up to 20 GWe)
- **Key concerns:**
 - Damage to structures, systems, and components (SSC)
 - Fuel and steam generator integrity
 - Violation of safety limits

Lifetime extension
- Reduces cost of electricity
- Essentially expands existing nuclear power fleet
- Requires ability to predict structures, systems, and components aging and life-cycle management
- **Key concerns:**
 - Effects of increased radiation and aging on integrity of reactor vessel and internals
 - Ex-vessel performance (effects of aging on containment and piping)
 - Significant financial decisions to support operation beyond 60 years must be made in ~5 yrs

Higher burnup
- Supports reduction in amount of used nuclear fuel
- Supports uprates by avoiding need for additional fuel
- **Key concerns:**
 - Cladding integrity
 - Fretting
 - Corrosion/CRUD
 - Hydriding
 - Creep
 - Fuel-cladding mechanical interactions
Fuel failure modes provide motivation for CASL activities

Summary of US fuel failure mechanisms (2000-2008)

* Edsinger, Stanek, Wirth, JOM 63, no. 8 (2011)
Grid-to-Rod-Fretting (GTRF)
CRUD-induced power shift (CIPS)

• deviation in axial power shape
 – Cause: boron uptake in CRUD deposits in high power density regions with subcooled boiling
 – affects fuel management and thermal margin in many plants
• power uprates will increase potential for CRUD growth

Need: Multi-physics chemistry, flow, and neutronics model to predict CRUD growth
Virtual Environment for Reactor Applications (VERA)
A suite of tools for scalable simulation of nuclear reactor core behavior

- Flexible coupling of physics components
 - Toolkit of components
 - Not a single executable
 - Both legacy and new capability
 - Both proprietary and distributable
- Attention to usability
 - Rigorous software processes
 - Fundamental focus on V&V and UQ
- Development guided by relevant challenge problems
 - Broad applicability

- Scalable from high-end workstations to existing and future HPC platforms
 - Diversity of models, approximations, algorithms
 - Architecture-aware implementations

VERA: Virtual Environment for Reactor Applications
A suite of tools for scalable simulation of nuclear reactor core behavior
Lightweight Integrating Multiphysics Environment (LIME)

Base LIME software

Input File(s)

Input Files (xml)

Problem Manager

Multi-Physics Driver

Physics Component A
Model Evaluator
Physics Component B
Model Evaluator
Physics Component C
Model Evaluator

Dakota Sensitivity, UQ

Trilinos, NOX Solver Library

“Plug and Play!”

https://sourceforge.net/projects/lime1/
Writing software is easy

• “Writing songs is easy. Writing great songs is hard.”
 – Bono (? couldn’t verify)

• Writing software is easy. Writing great software is hard.

Easier

- single author
- self
- research / exploration
- serial

Harder

- collocated team
- targeted
- prototype
- shared-memory parallel

developers

- geographically-dispersed team
- users
- production
- distributed-memory parallel

platform(s)

- broad community
- regulatory environment
- heterogeneous

CASL
CFD is required for several challenge problems (GTRF, CRUD/CIPS) - remainder of presentation focuses on neutronics...
Discrete Ordinates Methods for Neutron Behavior

- We solve the first-order form of the transport equation:
 - Eigenvalue form for multiplying media (fission):
 \[\hat{\Omega} \cdot \nabla \psi(r, \Omega, E) + \Sigma(r, E, T)\psi(r, \Omega, E) = \]
 \[\int dE' \int_{4\pi} d\Omega' \Sigma_s(r, \hat{\Omega} \cdot \hat{\Omega}, E' \rightarrow E, T)\psi(r, \Omega', E') + \]
 \[\frac{1}{k} \chi(E) \int dE' \int_{4\pi} d\Omega' \nu \Sigma_f(r, E', T)\psi(r, \Omega', E') \]
 - T-H coupling comes through the temperature-dependent material cross sections
- Total number of unknowns in solve:
 - unknowns = \(N_g \times N_c \times N_u \times N_a \times N_m \)
- An ideal (conservative) estimate.
 - (238) x (1 \times 10^9) x (4) x (288) x (16)

\[\text{unknowns} > 4 \times 10^{15} \]
Current State-of-the-Art in Reactor Neutronics

Pin cell (single fuel pin)
- 0/1-D transport
- high energy fidelity (10^{2-5} unknowns)
- approximate state and BCs

Lattice cell (single assembly)
- 2-D transport
- moderate energy fidelity (7-102 groups)
- approximate state and BCs
- depletion with spectral corrections
- space-energy homogenization

Full core
- 3-D diffusion
- low energy fidelity (2-4 groups)
- homogeneous lattice cells
- heterogeneous flux reconstruction
- coupled physics
Can we approach resolution/fidelity of current 2D analysis in 3D for full core analysis?
PWR-900 Whole-Core Reactor Problem

- 2 and 44-group, homogenized fuel pins
- 2×2 spatial discretization per fuel pin
- 17×17 fuel pins per assembly
- 289 assemblies
 - 157 fuel, 132 reflector
 - high, med, low enrichments
- Space-angle unknowns:
 - 233,858,800 cells
 - 128 angles (1 moment)
 - 1 spatial unknown per cell
Performance at scaling on ORNL Titan (Cray XK6)

- full partitioning scales well to 275K cores
- improved interconnect + reduce-scatter have dramatically reduced global reduction cost
- upscatter partitioning more efficient at lower set counts
- roll-over occurs between 4 and 11 sets (5 and 2 groups per set) where serial work in GS solver dominates

- Constant number of blocks = 12,544
- 44 total groups/22 coupled groups
What does this mean?

<table>
<thead>
<tr>
<th>Where we want to be…</th>
<th>Where we are…</th>
</tr>
</thead>
<tbody>
<tr>
<td>• reproduce fidelity of 2D calculations using consistent 3D methods</td>
<td>• assuming 2% peak, we can solve 1.7×10^{13} unknowns/hour (XT5)</td>
</tr>
<tr>
<td>• produce all state-points for an 18-month depletion cycle in $O(8 \text{ hours})$</td>
<td>• we can solve a reduced 3D problem ($O(10^{15})$ unknowns) in 175 hours</td>
</tr>
<tr>
<td>• $O(72)$ state points per cycle (1 week steps)</td>
<td>– assumes status quo on a 1 PF/s XT5 machine</td>
</tr>
<tr>
<td>• steady-state, coupled neutronics simulation with T-H feedback = $O(10^{19})$ unknowns</td>
<td></td>
</tr>
</tbody>
</table>

So…

• to reach 2D fidelity at 3D we need to solve $\sim 10^4 \times$ more unknowns
• to run all state points in one day at this fidelity using existing code and methods would require $\sim 140 \text{ EF/s}$
Is it hopeless?

- according to industry partners, a fully-consistent 3D calculation in 1 week would be acceptable
 - factor of 7 (20 EF/s)
- valuable insight possible without reproducing full 2D fidelity
 - factor of 150-200 (100 PF/s)
- utilize GPUs
 - if current projections hold, we can potentially get a factor of 3x-4x improvement by executing sweep kernels on the GPU
- further solver research (multigrid-in-energy) shows promise for reducing iteration counts as well

A 30-40 PF/s machine could allow fully-consistent, 3-D neutronics simulations
GPU Sweep Kernel

- Krylov multigroup solvers allow space-angle sweeps to be performed over all groups concurrently
- ideal for exploiting thread-based concurrency on GPUs
- space-angle sweep for all groups on GPU

<table>
<thead>
<tr>
<th>Performance Improvement factors</th>
<th>GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td></td>
</tr>
<tr>
<td>XK6 / Interlagos</td>
<td>3.5</td>
</tr>
<tr>
<td>XE6 / dual Interlagos</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Sweep Performance

- CPU/XK6
- CPU/XE6 (actual - hera)
- GPU/TitanDev
Future large-scale systems present challenges for applications

- Dramatic increases in node parallelism
 - 10 to 100× by 2015
 - 100 to 1000× by 2018
- Increase in system size contributes to lower mean time to interrupt (MTTI)
- Dealing with multiple additional levels of memory hierarchy
 - Algorithms and implementations that prioritize data movement over compute cycles
- Expressing this parallelism and data movement in applications
 - Programming models and tools are currently immature and in a state of flux
Future large-scale systems present challenges for applications

- Dramatic increases in node parallelism
 - 10 to 100× by 2015
 - 100 to 1000× by 2018
- Increase in system size contributes to lower mean time to interrupt (MTTI)
- Dealing with multiple additional levels of memory hierarchy
 - Algorithms and implementations that prioritize data movement over compute cycles
- Expressing this parallelism and data movement in applications
 - Programming models and tools are currently immature and in a state of flux

Over the life of CASL, these challenges will become increasingly significant at the desktop level
Questions? http://www.casl.gov/ -or- info@casl.gov
Supplemental
CASL Technical Focus Areas

- Radiation Transport Methods (RTM) and Thermal-Hydraulic Methods (THM)
- Materials Performance and Optimization (MPO)
- Validation and Uncertainty Quantification (VUQ)
- Advanced Modeling Applications (AMA)
- V&V and calibration through data assimilation
- Sensitivity analysis and uncertainty quantification
- Coupled physics environment
- Workflow & usability
- Programing model
- Requirements
- Physical reactor qualification
- Challenge problem application
- Validation
- NRC engagement

All Focus Areas span institutions (labs, universities, industry)
Virtual Environment for Reactor Applications (VERA)
A suite of tools for scalable simulation of nuclear reactor core behavior

- Flexible coupling of physics components
- Toolkit of components
 - Not a single executable
 - Both legacy and new capability
 - Both proprietary and distributable
- Attention to usability
- Rigorous software processes
- Fundamental focus on V&V and UQ
- Development guided by relevant challenge problems
- Broad applicability
- Scalable from high-end workstation to existing and future HPC platforms
 - Diversity of models, approximations, algorithms
 - Architecture-aware implementations

Virtual Environment for Reactor Applications (VERA)
A suite of tools for scalable simulation of nuclear reactor core behavior

- Chemistry (crud formation, corrosion)
- Fuel Performance (thermo-mechanics, materials models)
- Neutronics (diffusion, transport)
- Thermal Hydraulics (thermal fluids)
- Reactor System
- Structural Mechanics
- Multi-physics Integrator
- Multi-resolution Geometry
- Mesh Motion/Quality Improvement
- Multi-mesh Management
- Workflow (analysis / design / optimization)
- Geometry
- Mesh generation
- Material properties
- Input / user interface
CASL has embraced Agile software development processes

• based on methodologies being used by partners
 – combine attributes of Scrum and Kanban methodologies
 – customized for CASL and refined as needed (iteratively)
• enabled diverse team to be productive very quickly

Start
• users prioritize goals
• team determines work assignments

Execute
• two 30-minute standup meetings each week

End
• deliver and demonstrate to users
• review and plan next iteration

Desirable attributes
• emphasis on collaboration and adaptability
• constant communication / interaction
 – both within team and with user community
• accommodates changing requirements & unpredictability

Agility + Formality
CASL advanced CRUD modeling predictions

- Colored contours: boron concentration within crud layer
- Findings:
 - Crud thickness and boron vary with T variations on cladding surface
 - Crud and boron reduced by turbulence behind mixing vanes

Fuel rod (80 cm section)

Large azimuthal variation in fluid/cladding temperature

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>100°</th>
<th>200°</th>
<th>300°</th>
</tr>
</thead>
<tbody>
<tr>
<td>605 K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>595 K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>585 K</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spacer with mixing vanes

Boron concentration

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>$[B]$ (mg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t = 0 days</td>
<td>$[B]$</td>
</tr>
<tr>
<td>t = 174 days</td>
<td>$[B]$</td>
</tr>
<tr>
<td>t = 318 days</td>
<td>$[B]$</td>
</tr>
<tr>
<td>t = 400 days</td>
<td>$[B]$</td>
</tr>
</tbody>
</table>

Crud deposition

- Coolant: linear T increase
- Coolant: linear T increase
- Rod Heat Flux
- Rod Heat Flux

Image of boron concentration and crud deposition