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Outline 

 Definitions 

— Upload : Host (CPU) -> Device (GPU) 

— Readback: Device (GPU) -> Host (CPU) 

 Focus on OpenGL graphics 

— Implementing various transfer methods 

— Multi-threading and Synchronization 

— Debugging transfers 

— Best Practices & Results 



Applications 

 Streaming videos/time varying geometry 
or volumes 

— Broadcast, real-time fluid simulations etc 

 Level of detailing 

— Out of core image viewers, terrain engines 

— Bricks paged in as needed 

 Parallel rendering 

— Fast communication between multiple GPUs 
for scaling data/render 

 Remoting Graphics 

— Readback GPU results fast and stream over 
network 
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OpenGL Graphics – Streaming Data 

 Previous approaches 

— Synchronous – CPU and GPU idle during transfer 

— CPU Asynchronous 

 GPU and CPU Asynchronous with Copy Engines 

— Application layout 

— Use cases 

— Results 



Synchronous Transfers 

 Straightforward  

— Upload texture every frame 

— Driver does all copy 

 Copy, download and draw are 

sequential 
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CPU Asynchronous Transfers 

 Non CPU-blocking transfer using Pixel Buffer Objects (PBO) 

— Ping-pong PBO’s for optimal throughput 

— Data must be in GPU native format  
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Example – 3D texture +Ping-Pong PBOs 

Gluint pbo[2] ; //ping-pong pbo generate and initialize them ahead 

unsigned int curPBO = 0; 

  

//bind current pbo for app->pbo transfer 

glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo[curPBO]); //bind pbo 

GLubyte* ptr = (GLubyte*)glMapBufferRange(GL_PIXEL_UNPACK_BUFFER_ARB, 0, size, 

 GL_MAP_WRITE_BIT|GL_MAP_INVALIDATE_BUFFER_BIT); 

memcpy(ptr,pData[curBrick],xdim*ydim*zdim); 

glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER_ARB); 

//Copy pixels from pbo to texture object 

glBindTexture(GL_TEXTURE_3D,texId); 

glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo[1-curPBO]); //bind pbo 

glTexSubImage3D(GL_TEXTURE_3D,0,0,0,0,xdim,ydim,zdim,GL_LUMINANCE,GL_UNSIGNED_BYTE,0); 

glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB,0); 

glBindTexture(GL_TEXTURE_3D,0); 

curPBO = 1-curPBO;  

//Call drawing code here 

 



CPU Async - Execution Timeline 

time 

    Uploadt0:PBO0     Uploadt2:PBO0     Uploadt1:PBO1 

CPU 

GPU Drawt0 Drawt2 Drawt1 

Frame Draw 

Copyt0:PBO0 Copyt1:PBO1 Copyt2:PBO0 

Bus 

CPU Async 

Analysis with GPUView 

(http://graphics.stanford.edu/~mdfish

er/GPUView.html) 
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Results – Synchronous vs CPU Async 

PBOs 

Synchronous 
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- Transfers only  

- Adding rendering will reduce bandwidth, GPU can’t do both 
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Achieving Overlap - Copy Engines 

 Fermi+ have copy engines 

— GeForce, low-end Quadro- 1 CE 

— Quadro 4000+ - 2 CEs 

 Allows copy-to-host + compute + 

copy-to-device to overlap 

simultaneously 

 Graphics/OpenGL 

— Using PBO’s in multiple threads 

— Handle synchronization 



GPU Asynchronous Transfers 

 Downloads/uploads in separate thread 

— Using OpenGL PBOs 

 ARB_SYNC used for context 

synchronization  
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Upload–Render : Application Layout 
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Multi-threaded Context Creation 

 Sharing textures between multiple contexts 

— Don’t use wglShareLists 

— Use WGL/GLX_ARB_CREATE_CONTEXT instead 

— Set OpenGL debug on 

static const int contextAttribs[] = 

{ 

    WGL_CONTEXT_FLAGS_ARB, WGL_CONTEXT_DEBUG_BIT_ARB, 

    0 

};  

mainGLRC = wglCreateContextAttribsARB(winDC, 0, contextAttribs); 

wglMakeCurrent(winDC, mainGLRC); 

glGenTextures(numTextures, srcTex); 

//uploadGLRC now shares all its textures with mainGLRC 

uploadGLRC = wglCreateContextAttribsARB(winDC, mainGLRC, contextAttribs); 

//Create Upload thread 

//Do above for readback if using 



Synchronization using ARB_SYNC 

 OpenGL commands are asynchronous 

— When glDrawXXX returns, does not mean command is completed 

 Sync object glSync (ARB_SYNC) is used for multi-threaded 

apps that need sync 

— Eg rendering a texture waits for upload completion 

 Fence is inserted in a unsignaled state but when completed 

changed to signaled. 

//Upload         //Render 

glTexSubImage(texID,..)     glWaitSync(fence); 

GLSync fence = glFenceSync(..)   glBindTexture(.., texID); 

 

unsignaled 

signaled 



Upload-Render Sychronizaton 

 Need additional CPU event to coordinate waiting for GPU 

sync! 

WaitForSingleObject(startUploadValid) 

glWaitSync(startUpload[2]) 

glBindTexture(srcTex[2])  

glTexSubImage(..) 

endUpload[2] = glFenceSync(…) 

SetEvent(endUploadValid) 

srcTex 

Upload 

WaitForSingleObject(endUploadValid) 

glWaitSync(endUpload[0]) 

glBindTexture(srcTex[0])  

//Draw 

startUpload[0] = glFenceSync(…) 

SetEvent(startUploadValid); 

Render 

… 

[0] 

[2] 

GLsync startUpload[MAX_BUFFERS], endUpload[MAX_BUFFERS]; //GPU fence sync objects 

HANDLE startUploadValid, endUploadValid; //cpu event to coordinate wait for GPU sync 



Analysis with GPUView 

 Upload and Render in 

separate threads 

— Map to distinct 

hardware queues on 

GPU 

— Executed concurrently 

— Will serialize on pre-

Fermi hardware 



Adding Readback 

OpenGL Controlled  
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Render-Readback Synchronizaton 

WaitForSingleObject(endReadbackValid) 

glWaitSync(endReadback[2]) 

glFramebufferTexture(resultTex[2])  

//Draw 

startReadback[3] = glFenceSync(…) 

SetEvent(startReadbackValid) 

resultTex 

Render 

WaitForSingleObject(startReadbackValid) 

glWaitSync(startReadback[0]) 

glGetTexImage(resultTex[0])  

//Read pixels to png-pong pbo 

endReadback[0] = glFenceSync(…) 

SetEvent(endReadbackValid); 

Readback 

… 

[0] 

[2] 

GLsync startReadback[MAX_BUFFERS],endReadback[MAX_BUFFERS]; //GPU fence sync objects 

HANDLE startReadbackValid, endReadbackValid; //cpu event to coordinate wait for GPU 

sync 



GeForce vs Quadro Readbacks 

Readbacks on GeForce are 3x slower than Quadro 
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Upload-Render-Readback pipeline 

// Wait for signal to start upload 

CPUWait(startUploadValid); 

glWaitSync(startUpload[2]); 

 

// Bind texture object 

BindTexture(capTex[2]); 

 

// Upload 

glTexSubImage(texID…); 

 

// Signal upload complete 

GLSync endUpload[2]= glFenceSync(…); 

CPUSignal(endUploadValid); 

// Wait for download to complete 

CPUWait(endDownloadValid); 

glWaitSync(endDownload[3]); 

 

// Wait for upload to complete 

CPUWait(endUploadValid); 

glWaitSync(endUpload)[0]); 

 

// Bind render target 

glFramebufferTexture(playTex[3]); 

 

// Bind video capture  source texture 

BindTexture(capTex[0]); 

 

// Draw 

 

// Signal next upload 

startUpload[0] = glFenceSync(…); 

CPUSignal(startUploadValid); 

// Signal next download 

startDownload[3] = glFenceSync(…); 

CPUSignal(startDownloadValid); 

// Playout thread 

CPUWait(startDownloadValid); 

glWaitSync(startDownload[2]); 

 

// Readback 

glGetTexImage(playTex[2]); 

 

// Read pixels to PBO 

 

// Signal download complete 

endDownload[2] = glFenceSync(…); 

CPUSignal(endDownloadValid); 

Capture Thread Render Thread Playout Thread 

True, S038 – Best Practices in GPU-based Video Processing, GTC 2012 Proceedings  

[0] 

[1] 

[2] 

[3] 

[0] 

[1] 

[2] 

[3] 
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Debugging Transfers 

 Some OGL calls may not overlap between transfer/render 

thread 

— Eg non-transfer related OGL calls in transfer thread 

— Driver generates debug message  

 “Pixel transfer is synchronized with 3D rendering” 

— Application uses ARB_DEBUG_OUTPUT to check the OGL debug log 

— OpenGL 4.0 and above 

 

GL_ARB_debug_output -

http://www.opengl.org/registry/specs/ARB/debug_output.txt 



Copy Engine Results – Best Case 
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Conclusion 

 Presented different transfer methods 

 Keep the transfer method simple 

— Look at your application transfer needs and render times 

— Tradeoff in scaling vs application complexity 

 Future 

— Debugging multi-threaded transfers made much easier with 

Nsight Visual studio http://developer.nvidia.com/nvidia-nsight-

visual-studio-edition) 



References 

 Venkataraman, Fermi Asynchronous Texture 

Transfers, OpenGL Insights, 2012 

— Source code (around SIGGRAPH 2012) – 

https://github.com/organizations/OpenGLInsights  

 Related GTC Talks 

— S0328, Thomas True, Best Practices in GPU-based 

video processng 

— S0049, Alina Alt &Tom True, Using the GPU Direct for 

Video API 

— S0353, S Venkataraman, Programming multi-gpus for 

scalable rendering 

 

 

 

https://github.com/organizations/OpenGLInsights
https://github.com/organizations/OpenGLInsights

