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Agenda 

 The problem – what do we mean by seamless? 

 The way it has been done up till now 

 Our Solution 

 Programming for Multi-display configurations 

 



The Problem 

 Increases in pixel density and total  pixels have not kept 

pace with increases in CPU and GPU power 

 Different solutions for adding more pixels 

— LCDs: obtrusive bezels in the way 

 

 

 

 

— Nearly bezel-less 

 



The Problem (cont’d) 

 Projectors: overlap the edges to hide the seam 

 



The Problem (cont’d) 

 Projectors: optics (and screens) are never perfect 

 



The Problem (cont’d) 

 Just creating the overlap makes a hot spot since the overlap 

region gets twice the light 

 



The solution 

 Warp & Blend 

— Warp = Geometry Corrections 

— Blend = Intensity corrections 

 Can do one or the other, or both 

 



The way it’s been done up until now 

 Hardware appliance for warp and intensity adjustment 

— Expensive 

— Extra performance delay tax on the display pipeline 

— Additional complexity 

 

 Software warp and intensity adjustment 

— Applications need to be written to manage 

— There has not been an easy way to implement this for any 

application, until now… 



NVIDIA’s Solution 

 We can do this on the GPU! 

— GPUs are inherently parallel and already have the pixel 

information 

 Fast for image processing operations 

— GPUs are designed for imaging, texturing and raster operations 

(compared with external boxes using FPGAs) 

— Perform the transformation in the display pipeline before the 

pixels get scanned out 

— By doing this on the GPU, we have more flexibility: high quality 

filtering, integration with SLI Mosaic, etc. 

 



NVIDIA’s Solution 

 Works on Quadro 5000, 6000, and Quadro Plex 7000 

 Use it with G-sync to get synchronization between displays 

 



How’s it Done: Warp & Blend Workflow 

Define Distortion 

Create warping mesh 

and texture 

coordinates to 

implement distortion 

 

Typical Warping 

Mesh contains 4-2M 

vertices 

Optical 

Numerical 



How’s it Done: Overall Workflow 

• Set Mosaic Topology 

• Capture imagery for warp & blend 

calculation (optical) 

• Compute and set overlap  

• For each display  

 Compute and set warp, intensity 

 and black adjustment 

Doug Traill, S0341 - See the Big Picture Scalable Visualization Solutions for System 

Integrators, GTC 2012 recordings 



How’s it Done Programmatically: NVAPI 

 NVAPI is Nvidia’s programmatic interface to configure and 

control the GPUs. http://developer.nvidia.com/nvapi 

— Query/Set GPU and display configurations, layouts etc 

 New interfaces are added in the 295+ NDA version to allow 

warping and intensity adjustment before the final scanout 

 R302 NDA version will add support for image offset to do 

black-level adjustment 

 Works on single screen, multiple screens and multi-gpu 

configuration 

 Win 7 only 

http://developer.nvidia.com/nvapi
http://developer.nvidia.com/nvapi


gridTopo[1] 

Enumerating Displays 

 Get number of grids 

 

 

 Get display topology 

NvU32 gridCount; 

NvAPI_Mosaic_EnumDisplayGrids(NULL, &gridCount) 

gridTopo = new NV_MOSAIC_GRID_TOPO[gridCount]; 

NvAPI_Mosaic_EnumDisplayGrids(gridTopo, gridCount) 

gridTopo

[0] 

1x2 mosaic 

gridCount = 2 

console 



Getting Display Topology 

 Iterate over all grids and displays and get properties 
for (NvU32 iGrid = 0; iGrid < gridCount; iGrid++) { 

 NvU32 numDisplays = gridTopo[iGrid].displayCount ; //No of displays in this grid 

 NvU32 numRows = gridTopo[iGrid].rows; //No of rows in this grid 

 NvU32 numCols = gridTopo[iGrid].columns; //No of columns in this grid  

 NV_MOSAIC_DISPLAY_SETTING& ds = gridTopo[iGrid].displaySettings; 

 ds.width; ds.height; ds.freq ; //Width, Heiht and Refresh Rate for all displays  

 for (NvU32 iDisplay=0; iDisplay< gridTopo[iGrid].displayCount ;iDisplay++) { 

  NV_MOSAIC_GRID_TOPO_DISPLAY& display = gridTopo[iGrid].displays[iDisplay]; 

  NvU32 displayId = display.displayId ;//unique identifier for this display, that 

         // will be used for all subsequent functions 

  display.overlapX; //horizontal overlap for this display, explained later 

  display.overlapY; //vertical overlap for this display, explained later 

  } 

} 
1x2 mosaic 

console 

gridTopo[1] 

displayCount = 2 

1x2 

gridTopo[0] 

displayCount=1 

1x1 

displayId 

[1,0] 

 

displayId 

[1,1] 

displayId 

[0,0] 



Programming overlap per grid 

 Specifying overlapX and overlapY  

— the number of pixels of overlap between each display and the 

previous row or column 

— All displays in a column (row) should have same overlapX (overlapY) 

 

2x2 mosaic 

displays[0] 

 

200 

100 

NV_MOSAIC_GRID_TOPO& grid = gridTopo[1]; 

//column 0: set overlapX =0 

grid.display[0].overlapX = 0; 

grid.display[2].overlapX = 0;  

//row 0: set overlapY =0 

grid.display[0].overlapY = 0;  

grid.display[1].overlapY = 0; 

//column 1: 200px overlap between column 0 & 1 

grid.displays[1].overlapX = 100; 

grid.displays[3].overlapX = 100;  

//row 1: 100px overlap between row 0 & 1 

grid.displays[2].overlapY = 100; 

grid.displays[3].overlapY = 100;  

overlapX  
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Overlap  cont’d 

 Displays in different rows/columns can have different overlaps 

 

 

 

 Set for entire grid topology 

 

 

Check return value and handle errors properly! 

1 0 

1x4 mosaic 

[0,0] 

 

[0,1] 

2 3 

[0,2] [0,3] grid.display[0].overlapX = 0;  

grid.display[1].overlapX = 100;  

grid.display[2].overlapX = 200;  

grid.display[3].overlapX = 50;  100 
200 px 50 

NvAPI_Status ret = NvAPI_Mosaic_SetDisplayGrids(gridTopo, gridCount, 

NV_MOSAIC_SETDISPLAYTOPO_FLAG_CURRENT_GPU_TOPOLOGY); 



Fun with display coordinate systems 
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200px 

 scanoutRect  

— Per display 

 desktopRect 

— Subregion relative to desktop 

— Includes overlap 

 osRect 

— Extent of OS-visible virtual 

desktop 

 eg .\\Display1 

— Includes overlap 

 

 

 

.\\Display1 



Getting display coords from NVAPI 

 For each display, get its scanoutRect and desktopRect 

NvSBox desktopRect; //extent of this display wrt desktop 

NvSBox scanoutRect; //extent per display 

NvAPI_GPU_GetScanoutConfiguration(displayId, &desktopRect, &scanoutRect); 

 For each display, get its osRect 

NvSBox osRect; //os coordinates for this virtual display 

DEVMODEA dm = { 0 }; 

dm.dmSize = sizeof(DEVMODEA); 

if (EnumDisplaySettingsA(displayName, ENUM_CURRENT_SETTINGS, &dm)) { 

 osRect.sX = dm.dmPosition.x; 

 osRect.sY = dm.dmPosition.y; 

 osRect.sWidth = dm.dmPelsWidth; 

 osRect.sHeight = dm.dmPelsHeight; 

} 



Warp example 
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Texture  

Coords 

V1 
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Vertex positions specified in scanoutRect space 

Texture coords specified from desktopRect 

 

(1720,0) (3640,0) 

(3640,1200) (1720,1200) 

3640 

displayID1 displayID0 

displayID1 
displayID0 

displayID1 



Warping Data Structure 

 NV_SCANOUT_WARPING_DATA 

— vertexFormat : strip or triangle list 

 NV_GPU_WARPING_VERTICE_FORMAT_TRIANGLESTRIP_XYUVRQ 

 NV_GPU_WARPING_VERTICE_FORMAT_TRIANGLES_XYUVRQ 

— vertices : array of 6 float vertex 

 x,y : mesh coordinates per-display rectangle 

 u,v : texture coordinates in desktop space 

 r,q : perspective mapping to simulate 3D warp 

— numVertices 

— textureRect  

 Pass in the osRect 

u,v only 

u,v,r,q 



Warping - Code 

 Disable Warping 

float vertices[numVerts*6] ={x0,y0,u0,v0,r,q, x1,y1,u1,v1,r,q, …}; 

NV_SCANOUT_WARPING_DATA warpingData; 

warpingData.version = NV_SCANOUT_WARPING_DATA_VER; 

warpingData.numVertices = numVerts;  

warpingData.vertexFormat =             

  NV_GPU_WARPING_VERTICE_FORMAT_TRIANGLESTRIP_XYUVRQ; 

warpingData.vertices = vertices; 

warpingData.textureRect = osRect; 

int sticky = 0; // output - Reserved field for future use 

int maxNumVertices = 0; // output – returns the #pixels at scanout 

// This call does the  warp 

NvAPI_Error error =  NvAPI_GPU_SetScanoutWarping(displayId, &warpingData, 

&maxNumVertices, &sticky); 

warpingData.numVertices = 0;  

warpingData.vertices = NULL; 

NvAPI_GPU_SetScanoutWarping(displayId,…); 

 Enable Warping 



Blend Example 

Blending Texture 

1.0 0.5 1.0 

Final 

Output Image 

Scanout Image 

 Overlap  

region  



Blend – with Offset Texture  

 New feature starting R302 

 Separate offset texture  

— Inverse of black-level image 

— Can be 1 or 3 channel 

— Blended with already modulated image 

Entire surface needs 

to be this bright 

𝑂𝑢𝑡𝑝𝑢𝑡 
= 𝐼𝑛𝑝𝑢𝑡 ∗ 𝑏𝑙𝑒𝑛𝑑𝑇𝑒𝑥𝑡𝑢𝑟𝑒 ∗ 1 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑇𝑒𝑥𝑡𝑢𝑟𝑒  +  𝑜𝑓𝑓𝑠𝑒𝑡𝑇𝑒𝑥𝑡𝑢𝑟𝑒 



Blend/Intensity Adjustment 

 NV_SCANOUT_INTENSITY_DATA 

— width, height 

 Dimensions of blending texture 

 Normally same dimensions as scanout rectangle 

 If larger than scanout size, driver dynamically downsamples using box filter 

— blendingTexture 

 float[width*height*3], RGB with same storage layout as OpenGL  

 Set to NULL for no adjusments 

— offsetTexture 

 Same dimensions as blendingTexture 

— offsetTexChannels 

 Number of components in the offsetTexture, 1 or 3 

 



Blending - Code 

NV_SCANOUT_INTENSITY_DATA intensityData; 

// simple 1x2 config, overlap region is modulated by 0.5 

float intensityTexture[6]        = {0.5f, 0.5f, 0.5f, 

    1.0f, 1.0f, 1.0f} ; 

// overlapped region doesn’t require an offset 

float offsetTexture[6]        = {0.0f, 0.0f, 0.0f, 

    0.1f, 0.1f, 0.1f} ; 

 

intensityData.version             = NV_SCANOUT_INTENSITY_DATA_VER; 

intensityData.width               = 2; 

intensityData.height              = 1; 

intensityData.blendingTexture     = intensityTexture; 

intensityData.offsetTexture      = offsetTexture; 

intensityData.offsetTexChannels   = 3; 

 

int sticky = 0; // output - Reserved field for future use 

// This call does the intensity map 

NvAPI_Status error =  NvAPI_GPU_SetScanoutIntensity(displayId, 

&intensityData, &sticky); 

 



Pointers 

 Disabling/enabling warp is expensive 

— Requires modeset, lag in projector environments 

— However, changing the warp mesh does not require modeset 

 Eg During calibration, use identity quad with warp call to simulate no warping 

 Changing warp mesh is not deterministic 

— Warp should not be changed for continuous updates 

 Eg eye tracking at 60Hz, best to do that in the app 

— OK to change it infrequently 

 Eg during calibration 

 

 



Feature Roadmap  

 Filtering 

— Other options 

 Offset Image addition 

— Various blending modes 

 Persistence across reboot 

— making the settings consistent across 

reboots 

 Linux support 



Questions? 
quadrosvs@nvidia.com 


