
Warping & Blending for Multi-Display
Systems

Shalini Venkataraman

Senior Applied Engineer, NVIDIA

shaliniv@nvidia.com

http://www.gputechconf.com/page/home.html

Agenda

 The problem – what do we mean by seamless?

 The way it has been done up till now

 Our Solution

 Programming for Multi-display configurations

The Problem

 Increases in pixel density and total pixels have not kept

pace with increases in CPU and GPU power

 Different solutions for adding more pixels

— LCDs: obtrusive bezels in the way

— Nearly bezel-less

The Problem (cont’d)

 Projectors: overlap the edges to hide the seam

The Problem (cont’d)

 Projectors: optics (and screens) are never perfect

The Problem (cont’d)

 Just creating the overlap makes a hot spot since the overlap

region gets twice the light

The solution

 Warp & Blend

— Warp = Geometry Corrections

— Blend = Intensity corrections

 Can do one or the other, or both

The way it’s been done up until now

 Hardware appliance for warp and intensity adjustment

— Expensive

— Extra performance delay tax on the display pipeline

— Additional complexity

 Software warp and intensity adjustment

— Applications need to be written to manage

— There has not been an easy way to implement this for any

application, until now…

NVIDIA’s Solution

 We can do this on the GPU!

— GPUs are inherently parallel and already have the pixel

information

 Fast for image processing operations

— GPUs are designed for imaging, texturing and raster operations

(compared with external boxes using FPGAs)

— Perform the transformation in the display pipeline before the

pixels get scanned out

— By doing this on the GPU, we have more flexibility: high quality

filtering, integration with SLI Mosaic, etc.

NVIDIA’s Solution

 Works on Quadro 5000, 6000, and Quadro Plex 7000

 Use it with G-sync to get synchronization between displays

How’s it Done: Warp & Blend Workflow

Define Distortion

Create warping mesh

and texture

coordinates to

implement distortion

Typical Warping

Mesh contains 4-2M

vertices

Optical

Numerical

How’s it Done: Overall Workflow

• Set Mosaic Topology

• Capture imagery for warp & blend

calculation (optical)

• Compute and set overlap

• For each display

 Compute and set warp, intensity

 and black adjustment

Doug Traill, S0341 - See the Big Picture Scalable Visualization Solutions for System

Integrators, GTC 2012 recordings

How’s it Done Programmatically: NVAPI

 NVAPI is Nvidia’s programmatic interface to configure and

control the GPUs. http://developer.nvidia.com/nvapi

— Query/Set GPU and display configurations, layouts etc

 New interfaces are added in the 295+ NDA version to allow

warping and intensity adjustment before the final scanout

 R302 NDA version will add support for image offset to do

black-level adjustment

 Works on single screen, multiple screens and multi-gpu

configuration

 Win 7 only

http://developer.nvidia.com/nvapi
http://developer.nvidia.com/nvapi

gridTopo[1]

Enumerating Displays

 Get number of grids

 Get display topology

NvU32 gridCount;

NvAPI_Mosaic_EnumDisplayGrids(NULL, &gridCount)

gridTopo = new NV_MOSAIC_GRID_TOPO[gridCount];

NvAPI_Mosaic_EnumDisplayGrids(gridTopo, gridCount)

gridTopo

[0]

1x2 mosaic

gridCount = 2

console

Getting Display Topology

 Iterate over all grids and displays and get properties
for (NvU32 iGrid = 0; iGrid < gridCount; iGrid++) {

 NvU32 numDisplays = gridTopo[iGrid].displayCount ; //No of displays in this grid

 NvU32 numRows = gridTopo[iGrid].rows; //No of rows in this grid

 NvU32 numCols = gridTopo[iGrid].columns; //No of columns in this grid

 NV_MOSAIC_DISPLAY_SETTING& ds = gridTopo[iGrid].displaySettings;

 ds.width; ds.height; ds.freq ; //Width, Heiht and Refresh Rate for all displays

 for (NvU32 iDisplay=0; iDisplay< gridTopo[iGrid].displayCount ;iDisplay++) {

 NV_MOSAIC_GRID_TOPO_DISPLAY& display = gridTopo[iGrid].displays[iDisplay];

 NvU32 displayId = display.displayId ;//unique identifier for this display, that

 // will be used for all subsequent functions

 display.overlapX; //horizontal overlap for this display, explained later

 display.overlapY; //vertical overlap for this display, explained later

 }

}
1x2 mosaic

console

gridTopo[1]

displayCount = 2

1x2

gridTopo[0]

displayCount=1

1x1

displayId

[1,0]

displayId

[1,1]

displayId

[0,0]

Programming overlap per grid

 Specifying overlapX and overlapY

— the number of pixels of overlap between each display and the

previous row or column

— All displays in a column (row) should have same overlapX (overlapY)

2x2 mosaic

displays[0]

200

100

NV_MOSAIC_GRID_TOPO& grid = gridTopo[1];

//column 0: set overlapX =0

grid.display[0].overlapX = 0;

grid.display[2].overlapX = 0;

//row 0: set overlapY =0

grid.display[0].overlapY = 0;

grid.display[1].overlapY = 0;

//column 1: 200px overlap between column 0 & 1

grid.displays[1].overlapX = 100;

grid.displays[3].overlapX = 100;

//row 1: 100px overlap between row 0 & 1

grid.displays[2].overlapY = 100;

grid.displays[3].overlapY = 100;

overlapX

o
v
e
r
l
a
p
Y

displays[1]

displays[2]

displays[3]

100

200

Overlap cont’d

 Displays in different rows/columns can have different overlaps

 Set for entire grid topology

Check return value and handle errors properly!

1 0

1x4 mosaic

[0,0]

[0,1]

2 3

[0,2] [0,3] grid.display[0].overlapX = 0;

grid.display[1].overlapX = 100;

grid.display[2].overlapX = 200;

grid.display[3].overlapX = 50; 100
200 px 50

NvAPI_Status ret = NvAPI_Mosaic_SetDisplayGrids(gridTopo, gridCount,

NV_MOSAIC_SETDISPLAYTOPO_FLAG_CURRENT_GPU_TOPOLOGY);

Fun with display coordinate systems

desktopRect

scanoutRect
1920

1
2
0
0

(0,0)

(1720,0)
1920

displayID1 displayID0

1
2
0
0

osRect
3640

1
2
0
0

(0,0)

200px

 scanoutRect

— Per display

 desktopRect

— Subregion relative to desktop

— Includes overlap

 osRect

— Extent of OS-visible virtual

desktop

 eg .\\Display1

— Includes overlap

.\\Display1

Getting display coords from NVAPI

 For each display, get its scanoutRect and desktopRect

NvSBox desktopRect; //extent of this display wrt desktop

NvSBox scanoutRect; //extent per display

NvAPI_GPU_GetScanoutConfiguration(displayId, &desktopRect, &scanoutRect);

 For each display, get its osRect

NvSBox osRect; //os coordinates for this virtual display

DEVMODEA dm = { 0 };

dm.dmSize = sizeof(DEVMODEA);

if (EnumDisplaySettingsA(displayName, ENUM_CURRENT_SETTINGS, &dm)) {

 osRect.sX = dm.dmPosition.x;

 osRect.sY = dm.dmPosition.y;

 osRect.sWidth = dm.dmPelsWidth;

 osRect.sHeight = dm.dmPelsHeight;

}

Warp example

(480,0)

(0,1200) (1440,1200)

1920

1
2
0
0

V0

V1

V2

V3

(1920,0)

Positions

Texture

Coords

V1

V0

V3

V2

Vertex positions specified in scanoutRect space

Texture coords specified from desktopRect

(1720,0) (3640,0)

(3640,1200) (1720,1200)

3640

displayID1 displayID0

displayID1
displayID0

displayID1

Warping Data Structure

 NV_SCANOUT_WARPING_DATA

— vertexFormat : strip or triangle list

 NV_GPU_WARPING_VERTICE_FORMAT_TRIANGLESTRIP_XYUVRQ

 NV_GPU_WARPING_VERTICE_FORMAT_TRIANGLES_XYUVRQ

— vertices : array of 6 float vertex

 x,y : mesh coordinates per-display rectangle

 u,v : texture coordinates in desktop space

 r,q : perspective mapping to simulate 3D warp

— numVertices

— textureRect

 Pass in the osRect

u,v only

u,v,r,q

Warping - Code

 Disable Warping

float vertices[numVerts*6] ={x0,y0,u0,v0,r,q, x1,y1,u1,v1,r,q, …};

NV_SCANOUT_WARPING_DATA warpingData;

warpingData.version = NV_SCANOUT_WARPING_DATA_VER;

warpingData.numVertices = numVerts;

warpingData.vertexFormat =

 NV_GPU_WARPING_VERTICE_FORMAT_TRIANGLESTRIP_XYUVRQ;

warpingData.vertices = vertices;

warpingData.textureRect = osRect;

int sticky = 0; // output - Reserved field for future use

int maxNumVertices = 0; // output – returns the #pixels at scanout

// This call does the warp

NvAPI_Error error = NvAPI_GPU_SetScanoutWarping(displayId, &warpingData,

&maxNumVertices, &sticky);

warpingData.numVertices = 0;

warpingData.vertices = NULL;

NvAPI_GPU_SetScanoutWarping(displayId,…);

 Enable Warping

Blend Example

Blending Texture

1.0 0.5 1.0

Final

Output Image

Scanout Image

 Overlap

region

Blend – with Offset Texture

 New feature starting R302

 Separate offset texture

— Inverse of black-level image

— Can be 1 or 3 channel

— Blended with already modulated image

Entire surface needs

to be this bright

𝑂𝑢𝑡𝑝𝑢𝑡
= 𝐼𝑛𝑝𝑢𝑡 ∗ 𝑏𝑙𝑒𝑛𝑑𝑇𝑒𝑥𝑡𝑢𝑟𝑒 ∗ 1 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑇𝑒𝑥𝑡𝑢𝑟𝑒 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑇𝑒𝑥𝑡𝑢𝑟𝑒

Blend/Intensity Adjustment

 NV_SCANOUT_INTENSITY_DATA

— width, height

 Dimensions of blending texture

 Normally same dimensions as scanout rectangle

 If larger than scanout size, driver dynamically downsamples using box filter

— blendingTexture

 float[width*height*3], RGB with same storage layout as OpenGL

 Set to NULL for no adjusments

— offsetTexture

 Same dimensions as blendingTexture

— offsetTexChannels

 Number of components in the offsetTexture, 1 or 3

Blending - Code

NV_SCANOUT_INTENSITY_DATA intensityData;

// simple 1x2 config, overlap region is modulated by 0.5

float intensityTexture[6] = {0.5f, 0.5f, 0.5f,

 1.0f, 1.0f, 1.0f} ;

// overlapped region doesn’t require an offset

float offsetTexture[6] = {0.0f, 0.0f, 0.0f,

 0.1f, 0.1f, 0.1f} ;

intensityData.version = NV_SCANOUT_INTENSITY_DATA_VER;

intensityData.width = 2;

intensityData.height = 1;

intensityData.blendingTexture = intensityTexture;

intensityData.offsetTexture = offsetTexture;

intensityData.offsetTexChannels = 3;

int sticky = 0; // output - Reserved field for future use

// This call does the intensity map

NvAPI_Status error = NvAPI_GPU_SetScanoutIntensity(displayId,

&intensityData, &sticky);

Pointers

 Disabling/enabling warp is expensive

— Requires modeset, lag in projector environments

— However, changing the warp mesh does not require modeset

 Eg During calibration, use identity quad with warp call to simulate no warping

 Changing warp mesh is not deterministic

— Warp should not be changed for continuous updates

 Eg eye tracking at 60Hz, best to do that in the app

— OK to change it infrequently

 Eg during calibration

Feature Roadmap

 Filtering

— Other options

 Offset Image addition

— Various blending modes

 Persistence across reboot

— making the settings consistent across

reboots

 Linux support

Questions?
quadrosvs@nvidia.com

