\ S AN
N\ AR

P % \

n/di

>

Warping & \'Bl\e

Systems -

; Shalini Venkataraman
\ s Senior Applied Engineer, N
shaliniv@nvidia.com .

”°


http://www.gputechconf.com/page/home.html

Agenda

» The problem - what do we mean by seamless?
» The way it has been done up till now
= Qur Solution

* Programming for Multi-display configurations




The Problem

» [ncreases in pixel density and total pixels have not kept
pace with increases in CPU and GPU power

» Different solutions for adding more pixels
— LCDs: obtrusive bezels in the way

_— PR R — . X > o — S gy T G i © -
R gl o222 @
J‘ﬂ,-/ A "’ <
% 3 o s
& = )
5 DA d -
3 : &
= — s ca
. - N, TR T > [
— ) - 5 o~ ) e - I -
i )
0 £
i

— Nearly bezel-less




The Problem (cont’d)

» Projectors: overlap the edges to hide the seam




The Problem (cont’d)

» Projectors: optics (and screens) are never perfect




The Problem (cont’d)

= Just creating the overlap makes a hot spot since the overlap
region gets twice the light




The solution

= Warp & Blend

— Warp = Geometry Corrections
— Blend = Intensity corrections

= Can do one or the other, or both




The way it’s been done up until now

= Hardware appliance for warp and intensity adjustment
— Expensive
— Extra performance delay tax on the display pipeline
— Additional complexity

» Software warp and intensity adjustment
— Applications need to be written to manage

— There has not been an easy way to implement this for any
application, until now...




NVIDIA’s Solution

= We can do this on the GPU!

— GPUs are inherently parallel and already have the pixel
information

= Fast for image processing operations

— GPUs are designed for imaging, texturing and raster operations
(compared with external boxes using FPGAs)

— Perform the transformation in the display pipeline before the
pixels get scanned out

— By doing this on the GPU, we have more flexibility: high quality
filtering, integration with SLI Mosaic, etc.




NVIDIA’s Solution

= Works on Quadro 5000, 6000, and Quadro Plex 7000
» Use it with G-sync to get synchronization between displays




Numerical
Optical

Warp & Blend Workflow

How’s it Done




How’s it Done: Overall Workflow

Set Mosaic Topology
Capture imagery for warp & blend
calculation (optical)
Compute and set overlap
For each display
Compute and set warp, intensity
and black adjustment

Doug Traill, S0341 - See the Big Picture Scalable Visualization Solutions for System
Integrators, GTC 2012 recordings




How’s it Done Programmatically: NVAPI

= NVAPI is Nvidia’s programmatic interface to configure and
control the GPUs. http://developer.nvidia.com/nvapi

— Query/Set GPU and display configurations, layouts etc

* New interfaces are added in the 295+ NDA version to allow
warping and intensity adjustment before the final scanout

= R302 NDA version will add support for image offset to do
black-level adjustment

= Works on single screen, multiple screens and multi-gpu
configuration

* Win 7 only


http://developer.nvidia.com/nvapi
http://developer.nvidia.com/nvapi

Enumerating Displays

* Get number of grids

NvU32 gridCount;
NVvAPI Mosaic EnumDisplayGrids (NULL, &gridCount)

= Get display topology

gridTopo = new NV_MOSAIC GRID TOPO[gridCount];
NVAPI Mosaic EnumDisplayGrids (gridTopo, gridCount)

gridCount = 2

console 1x2 mosaic




Getting Display Topology

= [terate over all grids and displays and get properties

for (NvU32 iGrid = 0; iGrid < gridCount; iGrid++) {
NvU32 numDisplays = gridTopo[iGrid].displayCount ; //No of displays in this grid
NvU32 numRows = gridTopo[iGrid].rows; //No of rows in this grid
NvU32 numCols = gridTopo[iGrid].columns; //No of columns in this grid

NV _MOSAIC DISPLAY SETTING& ds gridTopo[iGrid] .displaySettings;
ds.width; ds.height; ds.freq ; //Width, Heiht and Refresh Rate for all displays

for (NvU32 iDisplay=0; iDisplay< gridTopo[iGrid].displayCount ;iDisplay++) {
NV _MOSAIC GRID TOPO DISPLAY& display = gridTopo[iGrid] .displays[iDisplay];

NvU32 displayId = display.displayId ;//unique identifier for this display, that
// will be used for all subsequent functions
display.overlapX; //horizontal overlap for this display, explained later
display.overlapY; //vertical overlap for this display, explained later
}
/ 1x2 mosaic
console
displayId displayId displayId
[0,0] [1,0] [1,1]
gridTopo[0] gridTopo[1]
displayCount=1 displayCount = 2

1x1 1x2




Programming overlap per grid

= Specifying overlapX and overlapY

— the number of pixels of overlap between each display and the
previous row or column

— All displays in a column (row) should have same overlapX (overlapY)

NV _MOSAIC GRID TOPO& grid = gridTopo[1l];
//column 0: set overlapX =0
grid.display[0] .overlapX = 0; overlapX

grid.display[2] .overlapX = 0;
//row 0: set overlapY =0
grid.display[0] .overlapY = 0; displays[0]
grid.display[l].overlapY = 0O;

//column 1: 200px overlap between column 0 & 1
grid.displays[l].overlapX = 100;
grid.displays[3].overlapX = 100; displays[2]
//row 1: 100px overlap between row 0 & 1

displays[1]

displays|[3]

overlapY

grid.displays[2] .overlapY = 100; :
grid.displays([3].overlapY = 100; 2X2 mosaic




Overlap cont’d

» Displays in different rows/columns can have different overlaps

grid.display[0] .overlapX = 0; [0,0] [0,1] [0,2] [0, 3]
grid.display[l].overlapX = 100;

grid.display[2] .overlapX = 200; 0 1 2 3
grid.display[3] .overlapX = 50;

1x4 mosaic

= Set for entire grid topology

NvVAPI Status ret = NvAPI Mosaic SetDisplayGrids (gridTopo, gridCount,
NV _MOSAIC SETDISPLAYTOPO FLAG CURRENT GPU TOPOLOGY) ;

Check return value and handle errors properly!




Fun with display coordinate systems

= scanoutRect
— Per display
» desktopRect

— Subregion relative to desktop
— Includes overlap

“ = osRect

— Extent of OS-visible virtual
desktop

= eg .\\Display1
— Includes overlap

.\Display1

osRect
<« 3640

(0,0)

920

noutRect

<——002T——>



Getting display coords from NVAPI

= For each display, get its scanoutRect and desktopRect

NvSBox desktopRect; //extent of this display wrt desktop
NvSBox scanoutRect; //extent per display

NvVAPI GPU GetScanoutConfiguration (displayId, &desktopRect, &scanoutRect);

= For each display, get its osRect

NvSBox osRect; //os coordinates for this virtual display
DEVMODEA dm = { 0 };

dm.dmSize = sizeof (DEVMODEA) ;
1f (EnumDisplaySettingsA (displayName, ENUM CURRENT SETTINGS, &dm)) {
osRect.sX = dm.dmPosition.x;
osRect.sY = dm.dmPosition.y;
osRect.sWidth = dm.dmPelsWidth;
osRect.sHeight = dm.dmPelsHeight;



Warp example

480,0) (1920,0) . e s
B v Y Vertex positions specified in scanoutRect space

 rosons

displaylD,

(3640,0)

‘\ Texture coords specified from desktopRect

(1720,1200) (3640,1200)



Warping Data Structure

* NV_SCANOUT WARPING DATA

— vertexFormat : strip or triangle list

= NV_GPU_WARPING_VERTICE_FORMAT_TRIANGLESTRIP_XYUVRQ
= NV_GPU_WARPING_VERTICE_FORMAT_TRIANGLES_XYUVRQ o a

— vertices : array of 6 float vertex !. u,v only
= X,y : mesh coordinates per-display rectangle ’
» u,v : texture coordinates in desktop space

u,v,,q
= 1,q : perspective mapping to simulate 3D warp

— numVertices

— texXxtureRect

= Pass in the osRect




Warping - Code
* Enable Warping

float vertices[numVerts*6] ={x0,y0,u0,v0,r,q, x1,yl,ul,vl,r,q, ..};
NV_SCANOUT WARPING DATA warpingData;
warpingData.version = NV_SCANOUT WARPING DATA VER;
warpingData.numVertices = numVerts;
warpingData.vertexFormat =

NV_GPU WARPING VERTICE FORMAT TRIANGLESTRIP XYUVROQ;

warpingData.vertices = vertices;

warpingData.textureRect = osRect;

int sticky = 0; // output - Reserved field for future use

int maxNumVertices = 0; // output - returns the #pixels at scanout

// This call does the warp

NVAPI Error error = NvAPI GPU SetScanoutWarping (displayld, &warpingData,

&maxNumVertices, &sticky);

= Disable Warping

warpingData.numVertices = 0;
warpingData.vertices = NULL;
NvAPI GPU SetScanoutWarping(displayId,..);



Blend Example

Scanout Image

Blending Texture

X 1.0 | 0.5 1.0

Final
Output Image




Blend - with Offset Texture

» New feature starting R302

= Separate offset texture

— Inverse of black-level image —_

— Can be 1 or 3 channel

— Blended with already modulated image




Blend/Intensity Adjustment

= NV _SCANOUT INTENSITY DATA
— width, height
= Dimensions of blending texture
= Normally same dimensions as scanout rectangle
= |f larger than scanout size, driver dynamically downsamples using box filter
— blendingTexture
= float[width*height*3], RGB with same storage layout as OpenGL
= Set to NULL for no adjusments
— offsetTexture
= Same dimensions as blendingTexture
— offsetTexChannels
= Number of components in the offsetTexture, 1 or 3




Blending - Code

NV _SCANOUT INTENSITY DATA intensityData;
// simple 1x2 config, overlap region is modulated by 0.5
float intensityTexture[6] = {0.5f, 0.5f, 0.5f,
1.0£, 1.0£, 1.0f£} ;
// overlapped region doesn’t require an offset
float offsetTexture[6] = {0.0f, 0.0f, 0.0f,
0.1f, 0.1£f, 0.1f} ;

intensityData.version = NV_SCANOUT INTENSITY DATA VER;
intensityData.width = 2;

intensityData.height = 1;
intensityData.blendingTexture = intensityTexture;
intensityData.offsetTexture = offsetTexture;
intensityData.offsetTexChannels = 35

int sticky = 0; // output - Reserved field for future use

// This call does the intensity map

NvVAPI Status error = NvAPI GPU SetScanoutIntensity(displayId,
&intensityData, &sticky);




Pointers

» Disabling/enabling warp is expensive
— Requires modeset, lag in projector environments
— However, changing the warp mesh does not require modeset
= Eg During calibration, use identity quad with warp call to simulate no warping
» Changing warp mesh is not deterministic

— Warp should not be changed for continuous updates
= Eg eye tracking at 60Hz, best to do that in the app

— OK to change it infrequently

= Eg during calibration




Feature Roadmap

= Filtering
— Other options
» Offset Image addition

— Various blending modes

= Persistence across reboot

— making the settings consistent across
reboots

* Linux support






