Efficient k-NN Search Algorithms on GPUs

Nikos Sismanis1 Nikos Pitsianis1,2 Xiaobai Sun2

Dept. ECE
Aristotle University, Greece

Dept. CS
Duke University, USA

May 15, 2012
Outline

1. Motivational Applications
2. Problem Statement
3. State-of-the-Art Solutions
4. Qualitative Performance Analysis
5. Quantitative Performance Analysis: Placing Landmarks
6. Multistage Streaming: Planning & Tuning
KNN search: Primitive and Prevalent Operation

Queries for most matching ones in a large and high dimensional data space/corpus, according to a well defined measure

More applications with increased data acquisition for

- machine learning and modeling
- pattern matching and (speech, image) recognition
- filtering or localization in data analysis & mining

Facilitating various research areas: computer/machine vision, computer-human interactions, computational imaging, geometry, computational statistics
KNN Search for Image Queries

1 D. G. Lowe, Inter. J. Comp. Vis., 2004
2 http://www.rocq.inria.fr/imedia/belga-logo.html
KNN Search for Image Queries

KNN search in SIFT feature space for image corpus & queries

- Preprocessed feature vectors for corpus images
- Extraction of feature vectors for query images/subimages
- High dimensional feature space (long feature vectors)
- Similarity score, correlation or distance function over the space
- KNN search to locate close matches for further classification

Fast KNN Search : Other Applications

The computation of the nearest neighbor for the purpose of feature matching is the most time-consuming part of the complete recognition and localization algorithm.

P. Azad, IROS, 2009

Fast KNN search will expedite

- GIS-moving objects in road networks C. Shahabi et al., SIGSPATIAL GIS, 2002
- Network intrusion detection L. Kuang and M. Zulkernine, ACM SAC, 2008
- Text categorization S. Manne et al., Inter. J. Comp. Appl., 2011
Outline

1. Motivational Applications

2. Problem Statement

3. State-of-the-Art Solutions

4. Qualitative Performance Analysis

5. Quantitative Performance Analysis: Placing Landmarks

6. Multistage Streaming: Planning & Tuning
The KNN Search Problem

Problem Statement

To each and every query, locate k nearest neighbors, according to a score function, among n corpus data points in a d-dim space

d: the dimensionality of the search space
such as the length of the SIFT feature vectors

n: the number of corpus data points to query from

q: the number of query points

k: the number of nearest neighbors to locate for each query
Outline

1. Motivational Applications
2. Problem Statement
3. State-of-the-Art Solutions
4. Qualitative Performance Analysis
5. Quantitative Performance Analysis: Placing Landmarks
6. Multistage Streaming: Planning & Tuning
State-of-the-Art Solutions

Typical solution components

- Search hierarchy for rapid elimination of far neighbors
 - Kd-trees \(^3\), Balltrees \(^4\), Metric trees \(^5\)
 - Total # of comparisons:
 - linear in \(k\) and sub-linear in global corpus size \(N\), e.g., \(O(\log N)\)

- Exact KNN search in a corpus of reduced size \(n\)
 - linear in \(k\) and \(n\)

- Approximate KNN search
 - Locality-sensitive hashing \(^6\)

3. J. L. Bentley, Comm. ACM, 1975
6. P. Indyk, 30-th ACM STOC, 1999
State-of-the-Art Solutions

More to be desired

- Synchronization on SIMD/SIMT processors such as GPUs
- Response latency for a single query
- Throughput rate for multiple queries
- Autotuning of performance
- Benchmarking at different integration scopes
KNN Search on GPUs: some other works

<table>
<thead>
<tr>
<th>DataSet</th>
<th>Alg</th>
<th>Speedup</th>
<th>Parameter range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(references)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kdd-cup(^7)</td>
<td>exact</td>
<td>50</td>
<td>CPU 262,144</td>
</tr>
<tr>
<td>uci adult(^8)</td>
<td>exact</td>
<td>15</td>
<td>ANN 30,956</td>
</tr>
<tr>
<td>inria holidays(^9)</td>
<td>exact</td>
<td>64</td>
<td>ANN 65,536</td>
</tr>
<tr>
<td>nasa images(^10)</td>
<td>exact</td>
<td>2</td>
<td>Sort 120,000</td>
</tr>
<tr>
<td>recom system(^11)</td>
<td>exact</td>
<td>160</td>
<td>CPU 80,000</td>
</tr>
<tr>
<td>labelme(^12)(^13)</td>
<td>approx.</td>
<td>40</td>
<td>lshkit 100,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>n</th>
<th>d</th>
<th>k</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>kdd-cup</td>
<td>65</td>
<td>7</td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td>uci adult</td>
<td>123</td>
<td>16</td>
<td>1,605</td>
<td></td>
</tr>
<tr>
<td>inria</td>
<td>128</td>
<td>20</td>
<td>1,024</td>
<td></td>
</tr>
<tr>
<td>nasa</td>
<td>254</td>
<td>32</td>
<td>any</td>
<td></td>
</tr>
<tr>
<td>recom</td>
<td>256</td>
<td>100</td>
<td>any</td>
<td></td>
</tr>
<tr>
<td>labelme</td>
<td>512</td>
<td>500</td>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

\(^7\) S. Liang et al., IEEE Symp. Web. Soc., 2010
\(^8\) Q. Kuang and L. Zhao, ISCSCT, 2009
\(^9\) V. Garcia et al., ICIP, 2010
\(^10\) R. J. Barientos et al., Euro-Par, 2011
\(^11\) K. Kato and T. Hosino, CCGRID, 2010
\(^12\) http://www.labelme.csail.mit.edu
\(^13\) J. Pan and D. Manocha, GIS, 2011
Outline

1. Motivational Applications
2. Problem Statement
3. State-of-the-Art Solutions
4. Qualitative Performance Analysis
5. Quantitative Performance Analysis: Placing Landmarks
6. Multistage Streaming: Planning & Tuning
Performance Analysis : Qualitative Factors

I. Architecture independent
 ◦ complexity in comparisons
 ◦ longest dependency path/depth
 ◦ variation in concurrency breadth

II. Architecture dependent
 ◦ effective concurrency breadth and dependency depth
 ◦ data locality : computation-communication ratio
 ◦ synchronization cost on GPUs

How well do we know the architectural impact quantitatively ?
Outline

1. Motivational Applications
2. Problem Statement
3. State-of-the-Art Solutions
4. Qualitative Performance Analysis
5. Quantitative Performance Analysis: Placing Landmarks
6. Multistage Streaming: Planning & Tuning
Performance Assessment : Quantitative References

Explore the two-ways relationship between SORT and SELECT

- \(\text{SORT} \implies \text{SELECT} \)
 - select or truncate \textit{after} a complete ascending sort
 - \textit{truncated sort}:
 truncate as early as possible \textit{during} an ascending sort process

\[\text{as reference landmarks for quantitative performance assessment, or even as competitive candidates} \]

- \(\text{SELECT} \iff \text{SORT} \)
 (omitted from this talk)
Truncation Sort Algorithms: Brief Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Serial</th>
<th>Parallel (length)</th>
<th>Truncation Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>BubbleSort</td>
<td>nk</td>
<td>$k(\log n - \log k + 1)$</td>
<td>k reversal passes</td>
</tr>
<tr>
<td>InsertionSort</td>
<td>nk</td>
<td>$k(\log n - \log k + 1)$</td>
<td>length-k array</td>
</tr>
<tr>
<td>HeapSort</td>
<td>$n \log k$</td>
<td>$k(\log n - \log k + 1)$</td>
<td>max-heap of size k</td>
</tr>
<tr>
<td>MergeSort</td>
<td>$n \log k$</td>
<td>$k(\log n - \log k + 1)$</td>
<td>elimination by “half”</td>
</tr>
<tr>
<td>QuickSort</td>
<td>nk</td>
<td>$k(\log n - \log k + 1)$</td>
<td>elimination by “half”</td>
</tr>
<tr>
<td>RadixSort</td>
<td>$n \log_r c$</td>
<td>$\log_r c$</td>
<td>reverse radix (MSB)</td>
</tr>
<tr>
<td>BitonicSort</td>
<td>$n \log^2 k$</td>
<td>$\log k \log n$</td>
<td>length-k bitonic</td>
</tr>
</tbody>
</table>

$$1 \leq k \leq n$$

15 D. E. Knuth, The Art of Comp. Prog. 3, Addison-Wesley, 1973
16 D. M. W. Powers, PACT, 1991
17 K. E. Batcher, AFIPS, 1968
Quantitative Landmark: Truncated Bitonic Sort

- higher # pairwise comparisons
- inherently synchronous, free of hashing or branching
- high data locality, within practical range of \(k\)
- regular structures, data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors

Sismanis, Pitsianis & Sun (AUTh & Duke)

KNN on GPUs
Quantitative Landmark: Truncated Bitonic Sort

- higher # pairwise comparisons
- inherently synchronous
 - free of hashing or branching
- high data locality
 - within practical range of k
- regular structures
 - data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors
Quantitative Landmark: Truncated Bitonic Sort

- higher # pairwise comparisons
- inherently synchronous
 free of hashing or branching
- high data locality
 within practical range of k
- regular structures
 data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors
Quantitative Landmark: Truncated Bitonic Sort

- Higher number of pairwise comparisons
- Inherently synchronous
 free of hashing or branching
- High data locality
 within practical range of k
- Regular structures
 data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors
Quantitative Landmark: Truncated Bitonic Sort

- Higher number of pairwise comparisons
- Inherently synchronous, free of hashing or branching
- High data locality, within practical range of k
- Regular structures, data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors
Quantitative Landmark: Truncated Bitonic Sort

- Higher number of pairwise comparisons
- Inherently synchronous
 - Free of hashing or branching
- High data locality
 - Within practical range of k
- Regular structures
 - Data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors

Sismanis, Pitsianis & Sun (AUTH & Duke)
Quantitative Landmark: Truncated Bitonic Sort

- higher # pairwise comparisons
- inherently synchronous

 free of hashing or branching

- high data locality

 within practical range of k

- regular structures

 data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors
Quantitative Landmark: Truncated Bitonic Sort

- higher # pairwise comparisons

- inherently synchronous

 free of hashing or branching

- high data locality

 within practical range of k

- regular structures

 data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors
Quantitative Landmark: Truncated Bitonic Sort

- higher # pairwise comparisons
- inherently synchronous
 - free of hashing or branching
- high data locality
 - within practical range of k
- regular structures
 - data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors
Quantitative Landmark: Truncated Bitonic Sort

- higher # pairwise comparisons
- inherently synchronous
 free of hashing or branching
- high data locality
 within practical range of k
- regular structures
 data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors
Quantitative Landmark: Truncated Bitonic Sort

- higher # pairwise comparisons
- inherently synchronous

- free of hashing or branching
- high data locality

- within practical range of k
- regular structures

- data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors
Quantitative Landmark: Truncated Bitonic Sort

- Higher number of pairwise comparisons
- Inherently synchronous, free of hashing or branching
- High data locality within practical range of k
- Regular structures for data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors

Sismanis, Pitsianis & Sun (AUTH & Duke)
Quantitative Landmark: Truncated Bitonic Sort

- higher # pairwise comparisons
- inherently synchronous
 free of hashing or branching
- high data locality
 within practical range of k
- regular structures
 data access, program

A remarkable quantitative reference for KNN search performance on SIMD/SIMT processors
THRUST::SORT vs Truncated Bitonic Sort

Speed-up of the k-NNS using Truncated Bitonic compared to thrust::sort

Time Ratio

log₂ n

log₂ k

Inclusion of Score Evaluation

Exclusion of Score Evaluation
Truncated Sorting Interleaved with Scoring

![Graph showing speed-up of k-NNS with interleaving distance computation with Truncated Bitonic]

- Speed-up of k-NNS from interleaving distance computation with Truncated Bitonic

- Time Ratio

- k=2, k=4, k=8, k=16, k=32, k=64, k=128, k=256

-

Sismanis, Pitsianis & Sun (AUTH & Duke)
Truncated BitonicSort & MGPU RadixSelect

Comparison of Truncated Bitonic and Radix Select over thrust::sort

Here, **thrust::sort** used as a common base for comparison.

Manifest of Synch. Cost

Truncated Bitonic Sort substantially outperforms MGPU Radix Select over the effective range.
Outline

1. Motivational Applications
2. Problem Statement
3. State-of-the-Art Solutions
4. Qualitative Performance Analysis
5. Quantitative Performance Analysis: Placing Landmarks
6. Multistage Streaming: Planning & Tuning
KNN Search in Multistage Streaming on GPUs

- transporting and buffering large corpus data in batches (batch size n)
- merging KNNs between the previous and the current corpus batches
- inclusion of score evaluation and pre/post computation tasks (separated or interleaved)
- multiple queries (as desirable in certain applications)
Profile in total execution time

- Left bars: Truncate after sorting using `thrust::sort` in percentile:
 data transfer dominant when the batch size n is large

- Right bars: Truncated Bitonic normalized against the left bars
KNN Search Profile on GPUs: Multiple Queries

Profile of k-NNS using `thrust::sort` and Truncated Bitonic for 128 queries and $k=256$

- **Left bars:** Truncate after sorting using `thrust::sort`
- **Right bars:** Truncated Bitonic normalized against the left bars
SIFT Feature Matching:

- **VLFeat, a CV Library**:
 - sequential implementation of feature extraction (with SIFT) and KNN search
 - approximate k-NN using tree space partition

- **Speed-up over VLFeat**:
 - 60X with 128 queries
 - $180 \sim 250X$ with 512 queries

a http://www.vlfeat.org

b Parallel SIFT vector extraction available on GPUs: http://www.cs.unc.edu/~ccwu/siftgpu/
Summary

We have

- addressed response latency & throughput issues

- explored the SORT-SELECT relationship

- exposed the synchronization cost on GPUs & provided references for quantitative performance assessment
 (relevant for approximate KNN search as well)

- suggested options and opportunities to better exploit GPUs for rapid KNN search queries

- codes and test data available at http://autogpu.ee.auth.gr
Acknowledgments

NVIDIA academic research equipment support
Marie Curie International Reintegration Program, EU
National Science Foundation (CCF), USA