Algorithm Acceleration for Geospatial Analysis
Geospatial Data

Google maps is a combination of vector and raster geospatial data, merged into a multi-layer visualization.
Geospatial Data: Vector

Vector data consists of points, lines and polygons with associated geographic coordinates and descriptive attributes.
Geospatial Data: Raster

Raster data consists of image layers comprised of pixels with associated geographic coordinates and descriptive attributes.
Hyperspectral
Remote sensing imagery comprised of multiple layers representing discrete portions of the electromagnetic spectrum.

(Hyperspectral Data “Cube”)

(x, y) = geospatial
\[\lambda = \text{wavelength} \]

(Coral Reflectance Spectrum)

Reflectance

Wavelength (nm)

GTC 2012, San Jose, CA

Copyright 2012, HySpeed Computing. CC BY 3.0.

www.hyspeedcomputing.com
Project Motivation
Coral reef health is being threatened worldwide. Conservation requires effective quantitative tools for monitoring and assessment over large areas.

Healthy coral reef (left) – Dead (right)

Source: NOAA Photo Library; D. Burdick
Marine Remote Sensing

Detecting and identifying objects and surfaces through the atmosphere and water column is a complex process

Schematic of light interactions for coastal remote sensing

Source: Introduction to Subsurface Sensing; B. Saleh
Sunglint Correction

Specular reflection of sunlight from the water surface obscures underlying features and needs to be suppressed.

French Frigate Shoals, Hawaii – AVIRIS imagery
Understanding the Overhead
Without sufficient utilization of GPU resources, the benefits of GPU acceleration can be offset by input/output overhead.

Sunglint Processing Times
(200MB image; 1,305,600 pixels; 42 bands)

<table>
<thead>
<tr>
<th>Language</th>
<th>Time/_pixel (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDL</td>
<td>0.002</td>
</tr>
<tr>
<td>OpenCL</td>
<td>0.003</td>
</tr>
<tr>
<td>CUDA</td>
<td>0.001</td>
</tr>
<tr>
<td>C++</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Serial C++ sunglint correction algorithm outperforms GPU.

Copyright 2012, HySpeed Computing. CC BY 3.0.
Coastal Algorithm Overview
Applies to shallow coastal environments, e.g., coral reefs, deriving environmental information from hyperspectral imagery.

- Hyperspectral Imagery
- Inversion Model
- Water Properties
 - Water Depth
 - Bottom Albedo
- Unmixing Model
- Habitat Characteristics

Inversion model based on a constrained non-linear optimization.
Coastal Algorithm Overview

Using IDL, the native environment for ENVI (geospatial software), the algorithm takes ~60 minutes to process this small area (~500,000 pixels).
Optimization

Mathematical optimization routines are used to maximize or minimize a function to find the optimal solution.

1-Dimensional Optimization:
find 1-D global minimum or maximum

Source: www.mathworks.com; S. Kozola

2-Dimensional Optimization:
find 2-D global minimum or maximum

Source: mathworld.wolfram.com; J. Pinter

Optimization is used across an array of computing fields.
Understanding the Scope of the Problem

A naïve approach to solving the optimization problem using a brute-force exhaustive search was neither accurate nor efficient.
Understanding your Tradeoffs

In many complex problems there is often a tradeoff between speed and accuracy, and it is important to know the risk tolerance of the problem.
Introduction | Sunglint Algorithm | Optimization Algorithm | Real-Time Processing | App Development

Real-Time Processing?
With current optimization algorithm and utilization of GPU resources, performance is approaching real-time processing rates

Further improvements are needed to achieve real-time processing
HySpeed Computing – An Innovation Community

Offering a framework for scientists and developers to obtain advanced software, sell user-created applications, and build collaborations

www.hyspeedcomputing.com

Building a community of innovation, people & products

Become part of the community!