
Flame On:
Real-Time Fire Simulation for Video Games

Simon Green, NVIDIA

Christopher Horvath, Pixar

Introduction

● This talk is about achieving realistic looking

simulations for games / visual effects

– Not necessarily physically accurate!

● There is a large artistic component

Overview

● 2D fire simulation using CUDA

● Sneak peak: 3D fire simulation using DirectX 11

● 5 Tips For Good Looking Fluid Sims

A Brief History of
Eulerian Fluids on the GPU

“Stable Fluids”,
Jos Stam, Siggraph 1999

Mark Harris' 2D fluid solver
(GPU Gems 1, 2004)

3D fluid solver
(GPU Gems 3, Crane, Llamas, Tariq, 2007)

APEX Turbulence
(Cohen, Tariq, 2010)

Interactive Fluid-Particle Simulation using Translating Eulerian Grids

Inspiration

● “Directable, high-resolution simulation of fire on

the GPU”, Horvath, Geiger, SIGGRAPH 2009

● Computes high-res 2D slices of

a 3D simulation

● Seeded using particle system

● GPGPU - used OpenGL

● Used in Harry Potter film

Goal – Interactive Fire for Video Games

● Most video games today use 2D sprites for fire

– Procedural, or based on filmed footage

● 3D simulation probably still too expensive for

real-time use today?

Today’s Video Game Fire

Simulated Fire

● Advantages

– High resolution

– Non-repeating animation

– Can respond to wind etc.

– Less storage (?)

● Disadvantages

– Computation time

– Artist controllability

Implementation

● Implemented 2D stable fluids solver in CUDA

– Uses pitch-linear textures to store fields

– cudaMallocPitch / cudaBindTexture2D

● Geometric multi-grid solver

– Credit: Nuttapong Chentanez

● OpenGL for rendering

– Shading done in GLSL pixel shader

Example CUDA Kernel

__global__

void pressureSolveD(float * __restrict__ newPressure,

 const float * __restrict__ divergence,

 int width, int height,

 int pitch)

{

 int x = blockIdx.x*blockDim.x + threadIdx.x;

 int y = blockIdx.y*blockDim.y + threadIdx.y;

 int i = y*pitch+x;

 if (x >= width || y >= height) return;

 float2 pos = make_float2((float)x + 0.5f, (float)y + 0.5f);

 float pL = tex2D(pressureTex, pos.x - 1, pos.y);

 float pR = tex2D(pressureTex, pos.x + 1, pos.y);

 float pB = tex2D(pressureTex, pos.x, pos.y - 1);

 float pT = tex2D(pressureTex, pos.x, pos.y + 1);

 float bC = divergence[i];

 float pNew = (pL + pR + pB + pT - params.dx2*bC) * 0.25f;

 newPressure[i] = pNew;

}

Fire Recipe

● Take smoke simulator

– Velocity, density

● Add new channels

– Temperature, Fuel, Noise

● Add a simple combustion model

– Combustion consumes fuel, generates heat

– Heat also generates upwards buoyancy force

Tip 1 – Get the Colors Right

● Need to map temperature to color

– use physically-based black body radiation model

(see later)

– Or: just an artist defined color gradient

● Dynamic range is important

– Fire is very bright!

● Can apply curve to density to get sharp flame

edges

Temperature

Color

Tip 2 – Use High Quality Advection

● Advection determines quality of motion and appearance

– detail in velocity and density fields

● Bilinear filtering not really good enough

– To much blurring over time

● Lots of other options:

– Higher-order filters (cubic)

– Error correction schemes – e.g. MacCormack

– Particle based - PIC/FLIP

● We used Catmull-Rom filter, bounded to neighbourhood

Tip 3 – Use a High-Res Density Field

● Density field can be much higher resolution than

velocity field

– 4x or more

● Read interpolated velocity field when advecting

density

● Need to downsample density to velocity

resolution if simulation is coupled

– i.e. buoyancy based on density

Tip 3 – Post Processing is Important

● Fire is very hot!

● Use post-processing to communicate

temperature to viewer

– Glow - blur HDR image, add back on top

– Heat distortion – offset background based on

gradient of temperature

● Motion blur

– sample image several times along velocity vector

No Glow

With Glow

With Motion Blur

Tip 5 - Embers

● Add particles passively advected by velocity field

● Shows motion of air even in empty regions

● Motion blurred

– Drawn as quads stretched between previous and

current position (using geometry shader)

● Inherit temperature from simulation

– Cool over time

Tip 4 – Just Add Noise

● Fire is very turbulent and fast moving

● Use high levels of vorticity confinement to

preserve vortices

● Use procedural (curl) noise to add turbulence

● Also advect a 2D noise field

– Blend in small amount of noise each frame

– Can be used to add detail to other fields

– Noise moves with fire

Work in Progress - 3D Simulation

● Relatively simple to extend simulation to 3D

● Surface writes to 3D textures are now possible

– in CUDA 4.x and DirectX 11

3D Performance

● Texture performance is great on Kepler

architecture

● Sample results:

– 128 x 128 x 64 (0.5M) voxels for sim, 64 solver steps

– 2x res density field (8M voxels)

– 17 msecs per frame, including rendering

– (GeForce GTX 680)

Tip 5 – Add Light Scattering

● Simple scattering approximation

– Similar idea to Light propagation volumes

– (Discrete Ordinate Method)

● Basic algorithm:

– Render radiance to 3D texture

– Blur radiance in 3 dimensions

– Sample blurred radiance (indirect light) in volume

render

Demo

Physically Correct Flame Rendering

Or... “How to get the Planck Blackbody Radiation

Function to actually look right.”

Overview

Components of Flame Appearance

Blackbody Radiation

Spectral Emission

Tristimulus Response

CIE XYZ

Direct RGB (Human,Camera,Infrared)

Flame Appearance

Blackbody Radiation of Combustion Byproducts

(Soot/Smoke) - The Red/Orange/Yellow part.

Spectral Emission - The Blue/Purple/Green

part.

http://en.wikipedia.org/wiki/Flame

http://en.wikipedia.org/wiki/Flame

Blackbody Radiation

Planck’s Law

Relationship between emitted radiant intensity

at each individual wavelength of light with

temperature

Calculated for a spectrum of wavelengths

within visible range (380nm to 780nm). With

5nm increments, this is a color sample with 81

values.

Spectral Emission

Dependent on type of fuel

Dependent on mixture of oxygen

Also defined as an intensity per wavelength

Butane Spectrum

Stimulus Response

For a given receptor, a Stimulus Response Curve

represents the sensitivity of that receptor to

each individual wavelength of light

The integral of a Stimulus Response Curve with

an Emission Spectrum produces a single scalar

receptor response to a spectrum of radiation

Tristimulus Response

Combination of Stimulus Response Curves for a

triplet of receptor types

Human Color Vision composed of three types of

cells with different spectral sensitivites, called

“cones”. (L, M, S)

Color Photography created from three types of

color sensitive films or sensors, or alternatively

three different filters (Technicolor)

CIE XYZ

Created in 1931 by International Commission

on Illumination

CIE RGB

RGB curves have negative spectral response

Human Spectral Sensitivity

Significantly Overlapping in Red and Green

Digital Camera Response

Significant Infrared Sensitivity without IR Filter

Digital Camera Response

Significant Infrared Sensitivity without IR Filter

1300K Flame via CIE

Overly Saturated, “Computer Generated” look.

1300K Flame via cRGB

Properly Balanced Flame Appearance

Questions?

Thanks

● Chris Horvath

● Mark Harris

● Nuttapong Chentanez

References

● Jos Stam, "Stable Fluids", In SIGGRAPH 99 Conference Proceedings, Annual

Conference Series, August 1999, 121-128 PDF

● Fast Fluid Dynamics Simulation on the GPU, Mark Harris, GPU Gems

● Real-Time Simulation and Rendering of 3D Fluids, Keenan Crane, Ignacio

Llamas, Sarah Tariq, GPU Gems 3

● Capturing Thin Features in Smoke Simulations, Siggraph Talk 2011, Magnus

Wrenninge, Henrik Falt,Chris Allen, Stephen Marshall PDF

http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/ns.pdf
http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/ns.pdf
http://http.developer.nvidia.com/GPUGems/gpugems_ch38.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch30.html
http://library.imageworks.com/pdfs/imageworks-library-capturing-thin-features-in-smoke-simulation.pdf
http://library.imageworks.com/pdfs/imageworks-library-capturing-thin-features-in-smoke-simulation.pdf

