Techniques for Designing GPGPU Games

Mark Joselli
Esteban Clua
Agenda

• Presentation;
• Background;
• Motivation;
• Objectives;
• Games and GPGPU;
• Techniques analyzed;
• Examples;
• Conclusions;
Presentation: Mark Joselli

- Chief-Developer-Officer of Nullpointer;
- Senior Research of MediaLab/UFF;
- Professor of games in Fac. CCAA;
- Game Developer;
- Researcher in GPGPU;
- Created the first Framework for GPGPU games;
Presentación: Prof. Esteban Clua, Dr.

- Associate Professor of Universidade Federal; Fluminense – Rio de Janeiro – Brazil;
- Director of MediaLab/UFF;
- CUDA Research Center at UFF;
About: Nullpointer

• Created in 2004, NullPointer acts as a development and innovation lab facility in Rio de Janeiro, working with academic / private research centers;

• We are strongly focused on market requirements, applying the professional experience of our team to real life situations within the retail, telecommunications and financial industries;

• The company has also expanded into a technology consultancy role, especially with regards to GPU computing platforms.
About: MediaLab/UFF

• First CUDA Research Center in Brazil;
• During many years, since the beginning of the concept of GPGPU, we have been researching games and the use of GPGPU with them;
• We are a laboratory of games, scientific simulation and HPC with the use of GPGPU;
• We compose a team of researches who are PhDs, masters and graduates;
Motivation

• High processing power of the GPUs, the GPUs are very powerful and games, as real time applications, need its power to add performance;

• Nowadays gaming hardware is able to process tasks in parallel (PlayStation, Xbox, multi-cores CPUs, GPUs...);
Objectives

• Present some techniques to get advantage of the GPUs in games;
• Present a framework for validating the techniques;
• Present a game for validating the framework;
Games and GPGPU

• Most of today’s use of GPU in games is resumed in physics (PhysX);
• But also the behavior could be implemented in the GPU;
• As far as we know, there are no projects that deals all the game logic on the GPU;
Techniques Analysed

• Avoid CPU-GPU transfer
 – One of bottlenecks of GPU’s application is the transfer time between the CPU-GPU;

• Shared Memory
 – The use of shared memory can optimize the GPGPUs kernels in up to 50%;

• Integrate the AI Behavior with Physics
 – Some algorithms that both tasks process are repeated, and should be integrated;
The CPU is responsible for:

- Windows Creation;
- Gather input and send it to the GPU;
- Make the GPU calls;
- Play sound effects;
- Finish the application;
The GPU is responsible for processing the game logic, like:

- Process the input;
- The game physics;
- The entities/enemies behavior;

This way we avoid the CPU-GPU data transfers;
The game logic is divided in 4 different threads:

- Main: which process score and player input;
- Enemy: which process the enemies behavior;
- Shoot: which process the shot behavior;
- Empty: which does not process noting;
Broad Phase of the Physics

• The same method for neighborhood gathering of the collision detection is used for simulating the enemies “vision”;

• For that our framework can use two kinds of neighborhood gathering algorithms: Uniform Grid and Neighborhood Grid;
Neighborhood Gathering

- The uniform grid is a common way of gather neighbors of entities;
- The neighborhood grid is new data structure for this mechanism;
Neighborhood Gathering

- In the neighborhood grid, each entity is mapped to a individual cell (1:1 mapping) according to its spatial location;
- Particles that are close in a geometric neighborhood sense are mapped to be close in the grid sense;
- In order to keep the neighborhood grid property, a sorting mechanism is done.
AI

• This framework implements state-machines for the AI of the enemies;
• And also behavior of allies and scenery objects and entities;
Test Crowd

• Using the framework we have implemented a flocking boids scenarios;

• Can process and render up to 2MM boids in real-time, while using the CPU can only 10K and a misc. CPU-GPU 100K;
Test: Crowd Test
Test Game: GPU Wars

• Game based on Geometric wars;
 – The player represents a GPU card inside the Computer and needs to process polygons, shaders and data by shooting them;

• Can process and render up to 16K entities in real time while the misc. CPU-GPU can process 8K and CPU 4K;
Test Game: GPU Wars
Conclusions

• We presented a framework for simple games that:
 – uses practically only the GPU to process the logic;
 – Integrates the physics with AI;
Questions

mjoselli@nullpointer.com.br