Real Time GPU-Based Maritime Scenes Simulation

Jérôme Graindorge
jerome.graindorge@alyotech.fr

Julien Houssay
julien.houssay@alyotech.fr

GTC2012 - S0053
Introduction and background

Technical presentation
- 3D surface
- Mesh generation
- Surface illumination and atmospheric propagation
- Rendering effects
- Workflow
- Interaction with boats
- Performances

Demo

Future - Work in progress
Introduction and background

Technical presentation
- 3D surface
- Mesh generation
- Surface illumination
- Other rendering effects
- Workflow
- Interaction with boats
- Performances

Demo

Future - Work in progress
The ALYOTECH group
- Software service company
- 1900 employees worldwide
- Major sites in Canada, Europe, North Africa and Middle East

The Scientific Software Department
- Located in France
- Modeling, simulation and software development
- 40 engineers in computer science & physics
- 6 PhDs.

GPU expertise
- Rendering (OpenGL, OpenSceneGraph, Unity, OpenInventor, VTK)
- Computing (CUDA, OpenCL)
Background

Goal
- Provide a real time visible, IR and radar simulation of a marine scene
- Civil and military market:
 - Sensor design (Maritime surveillance, Offshore platform protection, pollution detection),
 - Search and Rescue mission preparation,
 - Training, marketing

MERCUDA
- 2007-2011: first CUDA development, sea surface simulation demo
- ALYOTECH investment

Sea clutter
- 2009-2011: radar sea clutter simulation software
- French Research Institute for Exploration of the Sea (IFREMER) partnership
- French MoD funding

NEMO
- 2012-2014: Real time multi-spectral marine scene simulation product development
- 75% ALYOTECH investment
- 25% French public funding to support SMEs innovation
Mixing rendering and computing
- On the same chip
- Huge memory bandwidth thanks to CUDA (OpenCL) / OpenGL interoperability

GPU computing
- Intensive use of CUDA / OpenCL

GPU rendering
- First version: OpenGL + GLSL
- Now: OpenSceneGraph + GLSL
Overview

- Introduction and background
- Technical presentation
 - 3D surface
 - Mesh generation
 - Surface illumination
 - Other rendering effects
 - Workflow
 - Interaction with boats
 - Performances
- Demo
- Future - Work in progress
Sea surface

- Sea surface as a height field
- Spectrum approach
 - iFFT to transform back to spatial domain
 - Pros
 - Oceanography state-of-the-art spectrums
 - Very fast
 - Cons
 - No interaction with objects
 - No interaction with boundaries
- Use of cuFFT
Sea surface generation

- **2 spectrums: LF and HF**
 - **Set up with:**
 - Wind sea (Jonswap, Elfouhaily): fetch, wind speed, depth
 - Optional swell: direction, wavelength, amplitude
 - **Benefits:**
 - Covering full wavelength range [0.2m; 300m]
 - Limited computation time

- **For each spectrum**
 - **At T0:**
 - Generation from analytical 2-D wave power spectrum \(\Rightarrow \) Mean spectrum
 - Multiply by a complex Gaussian noise \(\Rightarrow \) T0 spectrum (instantaneous realization of the mean spectrum)
 - **At each time step T:**
 - Phase shifting \(\Rightarrow \) T spectrum
 - iFFT \(\Rightarrow \) T periodic height map
Sea surface generation

- 2 height maps generated:
 - 512x512 pixels resolution
 - High frequency (0.2 m. ~ 8 in.)
 - Low frequency x16 (3.2 m. ~ 10 ft.)

- Can generate an infinite open surface:
 - Summing HF and LF
 - Repeated pattern width:
 - 512 pixels at 3.2m (1.6km ~ 1 mile)
Goal: getting asymmetry between flatter troughs and sharper crests

Choppy wave model:
- Horizontal displacement computing
- Height map (regular grid) => point cloud
Goal: getting asymmetry between flatter troughs and sharper crests

Choppy wave model:
- Horizontal displacement computing
- Height map (regular grid) => point cloud

At each time step
- Generation of X and Y displacements spectrums from Z spectrum (HF & LF)
- 6 iFFTs -> X_{LF}, Y_{LF}, Y_{LF}, X_{HF}, Y_{HF}, Y_{HF} displacement grids

Can generate an infinite open surface
- Summing HF and LF displacements for each axis
Overview

- Introduction and background
- Technical presentation
 - 3D surface
 - Mesh generation
 - Surface illumination
 - Other rendering effects
 - Workflow
 - Interaction with boats
 - Performances
- Demo
- Future - Work in progress
Mesh generation

➢ At each time step

 • Plane regular grid - multi scale mesh (10 levels of details)
 o 1.5 10^6 facets
 • For each vertex:
 o Computing reference position in HF and LF displacement grids
 o Adding displacements to initial vertex position
Overview

- Introduction and background
- **Technical presentation**
 - 3D surface
 - Mesh generation
 - **Surface illumination**
 - Other rendering effects
 - Workflow
 - Interaction with boats
 - Performances
- Demo
- Future - Work in progress
Multi-spectral simulator

- Physically consistent
- Visible (RGB)
- Infrared (Luminance)
 - MW-IR \(\lambda = [2 \, \mu\text{m}, 5 \, \mu\text{m}] \)
 - LW-IR \(\lambda = [8 \, \mu\text{m}, 12 \, \mu\text{m}] \)

Scene illumination
- Partially cloudy sky illumination
- Global illumination by the sun

Surface reflection
- Pre-computed blurred sky domes
- Direct solar reflection
Cloudy sky illumination

- **Pre-computed sky domes**
 - SKYGEN - ALYOTECH product
 - Computes multi-spectral cloudy sky radiance and illumination domes
 - Visible and Infrared
 - MODTRAN based algorithms
Sky dome surface reflection

- Set of sky domes (generated for different roughnesses)
 - roughness = unresolved waves in the facet (slope standard deviation of unresolved waves)
 - Each sky dome corresponds to the original SKYGEN dome reflected on a rough surface
- Compute each mesh facet roughness
- Benefits
 - Handles different sea states
 - Handles different facet sizes in the multi-scale mesh

Roughness=0

Roughness=1

Roughness=4
Sun illumination

- **Sky**
 - Sun seen as a pin light
 - In addition to the cloudy sky dome

- **Sea surface**
 - Direct solar reflection
 - In addition to the sky dome surface reflection
 - Computed at run time
Overview

- Introduction and background

- Technical presentation
 - 3D surface
 - Mesh generation
 - Surface illumination
 - Other rendering effects
 - Workflow
 - Interaction with boats
 - Performances

- Demo

- Future - Work in progress
Other rendering effects

- Local roughness modification (oil slick)
Other rendering effects

- An atmospheric propagation based on MODTRAN, used together with a dedicated fast band-integration scheme.
Other rendering effects

- A white caps model based on each facet vertical acceleration
Other rendering effects

- An optional tone mapping rendering (work in progress)
 - Based on real time statistical computing on the HDR image

- Currently implemented:
 - Filmic tone mapping
 - Global average tone mapping
 - S-curve tone mapping

Normalized Gamma LUT

Filmic tone mapping

S-curve tone mapping
Overview

- Introduction and background
- **Technical presentation**
 - 3D surface
 - Mesh generation
 - Surface illumination
 - Other rendering effects
 - **Workflow**
 - Interaction with boats
 - Performances
- Demo
- Future - Work in progress
GTC2012 - Real Time GPU Based Maritime Scenes Simulation

Sea parameters:
- Wind speed
- Fetch
- ...

Workflow

T0 Plane Mesh
Sky domes (original and blurred domes)
Direct solar illumination

PHASE SHIFT

CUDA
OpenGL

Displacements
Z Grid
Y Grid
X Grid

T Spectrums
Z
Y
X

Vertex shader
Fragment shader
Textures
PBOs
Pin light

T0 Z Spectrum

iFFT

5/10/2012
Overview

- Introduction and background
- **Technical presentation**
 - 3D surface
 - Mesh generation
 - Surface illumination
 - Other rendering effects
 - Workflow
 - **Interaction with boats**
 - Performances
- Demo
- Future - Work in progress
Interaction with boats

- No access to the generated mesh
 - Sea height computed from HF/LF displacement grids

- Boat behavior:
 - Nutshell
 - Transfer function (work in progress)
 - PDE resolution (small boats)

- Wakes
 - Kelvin wake
 - Particles
Overview

- Introduction and background
- **Technical presentation**
 - 3D surface
 - Mesh generation
 - Surface illumination
 - Other rendering effects
 - Workflow
 - Interaction with boats
 - **Performances**
- Demo
- Future - Work in progress
- **Surface generation:**
 - 6 iFFT 512x512

- **Mesh generation:**
 - 0.8 10^6 vertices
 - 1.5 10^6 facets
 - Computing the 3D displacement of each vertex at each frame

- **Sea surface illumination**
 - Physically consistent illumination model of each pixel (1920x1080)

- **Performances**
 - Matlab + OpenGL: ~ 1 frame per minute
 - Cuda + OpenGL: ~ 25 frames per second (Full HD)
 - Fragment shader consumes more than 50% of the total time

NVIDIA GeForce GTX 580
DEMO
Use GPU computing to generate the mesh (instead of OpenGL)
 - Simplify sea-objects interaction computing

Fully OpenCL compatible version
 - Same binaries able to address both Cuda and OpenCL platforms

Dynamic sky domes
 - Depending on the camera position and the current time

Coupling with weather prediction model
 - Computing sea parameters from weather model outputs

Towards a product: NEMO
 - Coupling with existing EM simulation (ALYOTECH SeaClutter)
 - Multi spectral (Visible/IR/Radar) and multi sensor marine scenes simulator
Contacts

- Website (Fr)
 - http://www.alyotech.fr/ist_intro

- Videos
 - http://www.youtube.com/watch?v=sf6EVn2Zgk4 (electro-optics)
 - http://www.youtube.com/watch?v=yEPBf6VJC2U (EM SeaClutter)

- E-mail
 - Jérôme Graindorge (Project Manager) jerome.graindorge@alyotech.fr
 - Julien Houssay (GPU expert) julien.houssay@alyotech.fr
 - Stéphane Malledant (Sales Manager) stephane.malledant@alyotech.fr