
Debugging Experience
with CUDA-GDB and CUDA-MEMCHECK

Geoff Gerfin
Vyas Venkataraman

2

CUDA Debugging Solutions

 CUDA-GDB

(Linux & Mac)

CUDA-MEMCHECK

(Linux, Mac, & Windows)

NVIDIA® Parallel Nsight™

Eclipse Edition (NEW!)

Visual Studio Edition

Allinea

DDT

Rogue Wave

TotalView

3

CUDA-GDB Overview

 What is it? What does it let you do?

— Source and Assembly (SASS) Level Debugger

— Simultaneous CPU and GPU debugging

 Set Breakpoints and Conditional Breakpoints

 Dump stack frames for thousands of CUDA threads

 Inspect memory, registers, local/shared/global variables

— Runtime Error Detection (stack overflow,...)

 Can’t figure out why your kernel launch is failing? Run cuda-gdb!

 Integrated cuda-memcheck support for increased precision

— Supports multiple GPUs, multiple contexts, multiple kernels

4

CUDA-GDB Overview

 Which hardware does it support?

- All CUDA-capable GPUs SM1.1 and beyond

- Compatible with NVIDIA Optimus laptops

- Which platforms does it support?

- All CUDA-supported Linux distributions

- Mac OS X

- 32-bit and 64-bit platforms

5

NVIDIA® NSIGHT™ ECLIPSE EDITION

Nsight Eclipse Edition

Debug View is powered by

cuda-gdb

- Visualize device state

- Edit/Build/Debug/Profile

- Supported on Linux/Mac

Live demo Wed. @ 9am!

S0420 – Room A5

6

CUDA 101: Threads, Blocks, Grids

 Threads are grouped into blocks

 Blocks are grouped into a grid

 A kernel is executed as a grid of blocks of threads

7

CUDA 101: Synchronization

 __syncthreads() enforces synchronization within a block

— Threads wait until all other threads in the same block have arrived

__syncthreads()

__syncthreads() 1. First set of threads arrive

2. Second set of threads arrive

3. All threads resume

8

Execution Control

 Execution Control is identical to host debugging:

 launch the application

 resume the application (all host threads and device threads)

 kill the application

 interrupt the application: CTRL-C

(cuda-gdb) run

(cuda-gdb) continue

(cuda-gdb) kill

9

Execution Control

 Single-Stepping

 Behavior varies when stepping __syncthreads()

Single-Stepping At the source level At the assembly level

Over function calls next nexti

Into function calls step stepi

PC at a barrier? Single-stepping applies to Notes

Yes All threads in the current block. Required to step

over the barrier.

No Active threads in the current warp.

10

Breakpoints

 By name

 By file name and line number

 By address

 At every kernel launch

(cuda-gdb) break my_kernel
(cuda-gdb) break _Z6kernelIfiEvPT_PT0

(cuda-gdb) break acos.cu:380

(cuda-gdb) break *0x3e840a8
(cuda-gdb) break *$pc

(cuda-gdb) set cuda break_on_launch application

11

Conditional Breakpoints

 Only reports hit breakpoint if condition is met

— All breakpoints are still hit

— Condition is evaluated every time for all the threads

 Condition

— C/C++ syntax

— supports built-in variables (blockIdx, threadIdx, ...)

12

Thread Focus

 Some commands apply only to the thread in focus

— Print local or shared variables

— Print registers

— Print stack contents

 Components

— Kernel : unique, assigned at kernel launch time

— Block : the application blockIdx

— Thread : the application threadIdx

13

Thread Focus

 To switch focus to any currently running thread

(cuda-gdb) cuda kernel 2 block 1,0,0 thread 3,0,0

[Switching focus to CUDA kernel 2 block (1,0,0), thread (3,0,0)

(cuda-gdb) cuda kernel 2 block 2 thread 4
[Switching focus to CUDA kernel 2 block (2,0,0), thread (4,0,0)

(cuda-gdb) cuda thread 5
[Switching focus to CUDA kernel 2 block (2,0,0), thread (5,0,0)

14

Thread Focus

 To obtain the current focus:

(cuda-gdb) cuda kernel block thread
kernel 2 block (2,0,0), thread (5,0,0)

(cuda-gdb) cuda thread
thread (5,0,0)

15

Devices

 To obtain the list of devices in the system:

 The * indicates the device of the kernel currently in focus

(cuda-gdb) info cuda devices

 Dev Desc Type SMs Wps/SM Lns/Wp Regs/Ln Active SMs Mask

* 0 gf100 sm_20 14 48 32 64 0xfff

 1 gt200 sm_13 30 32 32 128 0x0

16

Kernels

 To obtain the list of running kernels:

 The * indicates the kernel currently in focus

(cuda-gdb) info cuda kernels

 Kernel Dev Grid SMs Mask GridDim BlockDim Name Args
* 1 0 2 0x3fff (240,1,1) (128,1,1) acos parms=...
 2 0 3 0x4000 (240,1,1) (128,1,1) asin parms=...

17

Threads

 To obtain the list of running threads for kernel 2:

 Threads are displayed in (block,thread) ranges

 Divergent threads are in separate ranges

 The * indicates the range where the thread in focus resides

(cuda-gdb) info cuda threads kernel 2

 Block Thread To Block Thread Cnt PC Filename Line
* (0,0,0) (0,0,0) (3,0,0) (7,0,0) 32 0x7fae70 acos.cu 380
 (4,0,0) (0,0,0) (7,0,0) (7,0,0) 32 0x7fae60 acos.cu 377

18

Stack Trace

 Applies to the thread in focus

(cuda-gdb) info stack

#0 fibo_aux (n=6) at fibo.cu:88
#1 0x7bbda0 in fibo_aux (n=7) at fibo.cu:90
#2 0x7bbda0 in fibo_aux (n=8) at fibo.cu:90
#3 0x7bbda0 in fibo_aux (n=9) at fibo.cu:90
#4 0x7bbda0 in fibo_aux (n=10) at fibo.cu:90
#5 0x7cfdb8 in fibo_main<<<(1,1,1),(1,1,1)>>> (...) at fibo.cu:95

19

Accessing variables and memory
 Read a source variable

 Write a source variable

 Access any GPU memory segment using storage specifiers

— @global, @shared, @local, @generic, @texture, @parameter

(cuda-gdb) print my_variable

$1 = 3

(cuda-gdb) print &my_variable

$2 = (@global int *) 0x200200020

(cuda-gdb) print my_variable = 5

$3 = 5

20

Hardware Registers

 CUDA Registers

— virtual PC: $pc (read-only)

— SASS registers: $R0, $R1,...

 Show a list of registers (blank for all)

 Modify one register

(cuda-gdb) info registers R0 R1 R4
R0 0x6 6
R1 0xfffc68 16776296
R4 0x6 6

(cuda-gdb) print $R3 = 3

21

Code Disassembly

(cuda-gdb) x/10i $pc

0x123830a8 <_Z9my_kernel10params+8>: MOV R0, c [0x0] [0x8]
0x123830b0 <_Z9my_kernel10params+16>: MOV R2, c [0x0] [0x14]
0x123830b8 <_Z9my_kernel10params+24>: IMUL.U32.U32 R0, R0, R2
0x123830c0 <_Z9my_kernel10params+32>: MOV R2, R0
0x123830c8 <_Z9my_kernel10params+40>: S2R R0, SR_CTAid_X
0x123830d0 <_Z9my_kernel10params+48>: MOV R0, R0
0x123830d8 <_Z9my_kernel10params+56>: MOV R3, c [0x0] [0x8]
0x123830e0 <_Z9my_kernel10params+64>: IMUL.U32.U32 R0, R0, R3
0x123830e8 <_Z9my_kernel10params+72>: MOV R0, R0
0x123830f0 <_Z9my_kernel10params+80>: MOV R0, R0

22

CUDA-GDB 5.0 Features

 Attach to a running CUDA process (SM 2.0 and beyond)

 Attach upon GPU exceptions (SM 2.0 and beyond)

 Separate Compilation Support (SM 2.0 and beyond)

 Inlined Subroutine Debugging (SM 2.0 and beyond)

 CUDA API error reporting

 Enhanced interoperation with cuda-memcheck

23

CUDA-GDB 5.0 Features - Attach

CUDA

GDB

GPU CPU

 CPU threads

 GPU kernels, blocks, threads

 CPU + GPU memory state

 CPU + GPU register state

Attach at any point in time!

24

CUDA-GDB 5.0 Features - Attach

 Run your program at full speed, then attach with cuda-gdb

 No environment variables required!

 Inspect CPU and GPU state at any point in time

— List all resident CUDA kernels

— Utilize all existing CUDA-GDB commands

 Attach to CUDA programs forked by your application

 Detach and resume CPU and GPU execution

25

Attaching to a running CUDA process

1. Run your program, as usual

2. Attach with cuda-gdb, and see what’s going on

$ cuda-gdb myCudaApplication PID

Program received signal SIGTRAP, Trace/breakpoint trap.

[Switching focus to CUDA kernel 0, grid 2, block (0,0,0), thread (0,0,0),

device 0, sm 11, warp 1, lane 0]

0xae6688 in acos_main<<<(240,1,1),(128,1,1)>>> (parms=...) at acos.cu:383

383 while (!flag);

(cuda-gdb) p flag

$1 = 0

$ myCudaApplication

26

Attaching on GPU Exceptions

1. Run your program, asking the GPU to wait on exceptions

2. Upon hitting a fault, the following message is printed

3. Attach with cuda-gdb, and see which kernel faulted

$ cuda-gdb myCudaApplication PID

Program received signal CUDA_EXCEPTION_10, Device Illegal Address.

(cuda-gdb) info cuda kernels

 Kernel Dev Grid SMs Mask GridDim BlockDim Name Args

• 0 0 1 0x00000800 (1,1,1) (1,1,1) exception_kernel data=...

$ CUDA_DEVICE_WAITS_ON_EXCEPTION=1 myCudaApplication

The application encountered a device error and CUDA_DEVICE_WAITS_ON_EXCEPTION is

set. You can now attach a debugger to the application for inspection.

27

CUDA-GDB 5.0 Features – Error Reporting

 CUDA API error reporting (three modes)

1. Trace all CUDA APIs that return an error code (default)

2. Stop in the debugger when any CUDA API fails

3. Hide all CUDA API errors (do not print them)

 Enhanced interoperation with cuda-memcheck

— Display faulting address and memory segment

warning: CUDA API error detected: cudaMalloc returned (0xb)

(cuda-gdb) set cuda api failures [ignore | stop | hide]

Memcheck detected an illegal access to address (@global)0x500200028

28

CUDA-MEMCHECK

29

What is CUDA-MEMCHECK ?

 “Why did my kernel fail ?”

 Lightweight tool

 Run time error checker

— Precise errors : Memory access

— Imprecise errors : Hardware reported (SM 2.0+)

 Cross platform : Linux, Mac, Windows

 Integrated into cuda-gdb (Linux / Mac Only)

30

Running CUDA-MEMCHECK

 Standalone

 Misaligned and Out of bound access in global memory

$ cuda-memcheck [options] <my_app> <my_app_options>

Invalid __global__ read of size 4

 at 0x000000b8 in basic.cu:27:kernel2

 by thread (5,0,0) in block (3,0,0)

 Address 0x05500015 is misaligned

31

Running CUDA-MEMCHECK

 Imprecise errors

 Multiple precise errors using continue mode

 Leak checking of cudaMalloc() allocations

— Allocation that has not been cudaFree()’d at context destroy

 Integrated mode in CUDA-GDB

Out-of-range Shared or Local Address

 at 0x00000798 in kernel1

 by thread (0,0,0) in block (0,0,0)

(cuda-gdb) set cuda memcheck on

32

New features in 5.0

 Shared memory hazard detection (racecheck)

 Improved precise detection in address spaces

 Device side malloc()/free() error checking

 Device heap allocation leak checking

 Stack back traces

 CUDA API error checking

 Better reporting inside cuda-gdb

 Improved precision for device heap checks

 Name demangling (with parameters) for kernels

33

Threads revisited

 Threads are grouped into blocks

 Blocks are grouped into a grid

 A kernel is executed as a grid of blocks of threads

34

Memory hierarchy

 Thread:

— Registers

— Local memory

 Block of threads:

— Shared memory

 All blocks:

— Global memory

35

Memory hierarchy

 Thread:

— Registers

— Local memory

 Block of threads:

— Shared memory

 All blocks:

— Global memory

36

Memory hierarchy

 Thread:

— Registers

— Local memory

 Block of threads:

— Shared memory

 All blocks:

— Global memory

37

Memory hierarchy

 Thread:

— Registers

— Local memory

 Block of threads:

— Shared memory

 All blocks:

— Global memory

38

Shared memory
 Allocated per thread block

 Same lifetime as the block

 Accessible by any thread in the block

 Low latency

 High aggregate bandwidth

 Several uses:

– Sharing data among threads in a

block

– User-managed cache (reducing

global memory accesses)

39

Sharing data between threads

• Broadcast a value

• One writer thread

• Multiple reader threads

• Value is scoped to the grid

40

Sharing data between threads

• Broadcast a value

• One writer thread

• Multiple reader threads

• Value is scoped to the grid

41

Sharing data between threads

• Broadcast a value

• One writer thread

• Multiple reader threads

• Value is scoped to the grid

42

Sharing data between threads

• Broadcast a value

• One writer thread

• Multiple reader threads

• Value is scoped to the grid

43

Broadcast Implementation

__global__ int bcast(void) {

 int x;

 __shared__ int a;

 if (threadIdx.x == WRITER)

 a = threadIdx.x;

 x = a;

 // do some work

}

a

44

Sharing data between threads

a

45

Sharing data between threads

a

a

a

• Data access hazard

• Data being read in thread 2 can be stale

• Need ordering

46

Racecheck : Overview

 Mutations

— Inconsistent data

 Detect three types of hazards

— Write after Write (WAW)

— Read after Write (RAW)

— Write after Read (WAR)

 Internal heuristics

— Reduce false positives

— Prioritize hazards

47

Racecheck : Usage

 Built into cuda-memcheck

— Use option --tool racecheck

 Byte accurate

 Can provide source file and line

 Other useful options :

— save to save output to a disk

— print-level to control output

$ cuda-memcheck --tool racecheck <my_app> <my_app_options>

48

Racecheck : Internal Heuristic Filters

 Each report is assigned a priority

— Error

 Highest priority

— Warning

 Usually hit only by advanced users

— Information

 Same data for a Write After Write conflict (WAW)

 Hazard visibility can be controlled using --print-level option

49

Racecheck : Broadcast

__global__ int bcast(void) {

 int x;

 __shared__ int a;

 if (threadIdx.x == WRITER)

 a = threadIdx.x;

 x = a;

}

a

 Launch of 64 threads

 Ran app with Racecheck

50

Racecheck : Broadcast

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 On a 16 SM GF100

 4 errors found (1 report per byte)

 RAW (Read after Write) hazards

 Based on executed interleaving

 Identified bad accesses to shared memory

51

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

52

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

53

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

54

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

55

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

 Block index (x, y, z)

56

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

 Block index (x, y, z)

 Per thread

 Access type

57

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

 Block index (x, y, z)

 Per thread

 Access type

 Thread index (x, y, z)

58

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

 Block index (x, y, z)

 Per thread

 Access type

 Thread index (x, y, z)

 Instruction offset in kernel

59

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

 Block index (x, y, z)

 Per thread

 Access type

 Thread index (x, y, z)

 Instruction offset in kernel

 File name and line number (if available)

60

Racecheck : Anatomy of a report

ERROR: Potential RAW hazard detected at __shared__ 0x3 in block
(0, 0, 0) :
 Write Thread (0, 0, 0) at 0x000000d8 in race.cu:25:bcast(void)
 Read Thread (35, 0, 0) at 0x000000e8 in race.cu:27:bcast(void)
 Current Value : 0

 Priority level of report

 Type of hazard

 Location of hazard

 Block index (x, y, z)

 Per thread

 Access type

 Thread index (x, y, z)

 Instruction offset in kernel

 File name and line number (if available)

 Kernel name

61

Broadcast Implementation Revisited

__global__ int kernel(void) {

 int x;

 __shared__ int a;

 if (threadIdx.x == WRITER)

 a = threadIdx.x; Write

 x = a; Read

 // do some work

}

a

• Unsafe read, write skipped for some threads

• Fix by forcing an order

62

Fixed Broadcast Implementation

__global__ int kernel(void) {

 int x;

 __shared__ int a;

 if (threadIdx.x == WRITER)

 a = threadIdx.x;

 __syncthreads();

 x = a;

 // do some work

}

a

63

Stack Back Traces

 Saved host back trace at call site

— Precise errors : Kernel launch site

— Global Leaks : cudaMalloc site

— CUDA API errors : CUDA API call site

 Device function call back trace at error

 Supported host OS : Linux, Mac, Windows

 Supported devices : Fermi+

— Only in non blocking launch mode

 Enabled by default

64

Sample Back Trace

Invalid __local__ write of size 4
 at 0x000000e8 in localRecursive.cu:24:recursive(int*)
 by thread (6,0,0) in block (0,0,0)
 Address 0x00fffbfc is out of bounds
 Device Frame:recursive(int*) (fibonacci(int, int) : 0xe0)
 Device Frame:recursive(int*) (fibonacci(int, int) : 0xe0)
 Device Frame:recursive(int*) (fibonacci(int, int) : 0xe0)
 Device Frame:recursive(int*) (recursive(int*) : 0x28)
 Saved host backtrace up to driver entry point at kernel launch time
 Host Frame:libcuda.so (cuLaunchKernel + 0x3ae) [0xcb8ae]
 Host Frame:libcudart.so.5.0 [0x11dd4]
 Host Frame:libcudart.so.5.0 (cudaLaunch + 0x182) [0x3ad82]
 Host Frame:localRecursive (_Z28__device_stub__Z9recursivePiPi + 0x33) [0xfa3]
 Host Frame:localRecursive (main + 0x2cd) [0x12ad]
 Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
 Host Frame:localRecursive [0xdc9]

65

CUDA API Error Checking

 Checks all CUDA API calls

 Message when call will return an error

 Application will not terminate

 Standalone only

 Enable using --report-api-errors yes

66

Improved Precise Checking

 Improved precise error reporting

— Shared loads and stores

— Local loads and stores

— Global atomics and reductions

 Error messages now have an address space qualifier

 Enabled in both integrated and standalone modes

 Enabled on all supported architectures

67

Summary

 CUDA-GDB

— Usage

— Attach

— API error checking

 CUDA-MEMCHECK

— Usage

— Shared memory data access hazard detection (race check)

— Stack back traces

— API error checking

68

Thank You

 Availability:

— CUDA toolkit : http://www.nvdia.com/getcuda

 CUDA experts table

 For more questions, come to our booth on the demo floor

 Repeat session on Wednesday @ 2 pm

http://www.nvdia.com/getcuda
http://www.nvdia.com/getcuda

