A Fast CUDA Compatible Short Read Aligner to Large Genomes

Pattern Search using BWT

Cyclic Rotations	$\mathbf{M}_{\text {G }}$	BWT
cattattagga\$ attattagga\$c ttattagga\$ca tattagga\$cat attagga\$catt ttagga\$catta tagga\$cattat agga\$cattatt gga\$cattatta ga\$cattattag a\$cattattagg \$cattattagga	\$cattattagg a a\$cattattag \mathbf{g} agga\$cattat t attagga\$cat t attattagga\$ c cattattagga \$ ga\$cattatta \mathbf{g} gga\$cattatt a tagga\$catta \mathbf{t} tattagga\$ca t ttagga\$catt a ttattagga\$c a	

The BWT of sequence G can be constructed in three steps: append a special character $\$$, which is lexicographically smaller than any character in Σ, to the end of G to form a new sequence G Ş.
construct a conceptual matrix M_{G} whose rows are all
cyclic rotations of $G S$ (equivalent to all suffixes of G) cyclic rotations of GS (equivalent to all suffixes of
sorted in lexicographical order.
take the last column of M_{G} to form the BWT of G
The ith entry in SA has a one-to-one correspondence relationship with the ith row of $M_{6} \cdot M_{6}$ has a property
called "last-to-first column mapping", which means that the ${ }^{\text {ith }}$ occurrence of a character in the last column corresponds to the $\mathrm{i}^{\text {th }}$ occurrence of the same character in the first column.

Define $\mathrm{C}(\cdot)$ to denote an array of length $|\Sigma|$, where $\mathrm{C}(\mathrm{x})$ represents the number of characters in G that are lexicographically smaller than $x \in \Sigma$, and $\operatorname{Occ}(\cdot)$ to denote the occurrence array, where Occ(x, i) represents the number of occurrences of x in $\mathrm{B}[0, \mathrm{i}]$.

Given a substring S of G, we can find all the occurrences of S using a backward search procedure based on the FM-
 index, which employs the arrays $C(\cdot)$ and $\operatorname{Occ}(\cdot)$ to compute the SA interval of S. Thus, using the forward BWT , the SA interval can be recursive of C , as
rightmost to the leftmost suffixes of

$$
\int I_{a}(i)=C(S[i])+O c c\left(S[i], I_{a}(i+1)-1\right)+1, \quad 0 \leq i<
$$

$$
\left\{\begin{array}{l}
a_{b}(i)=C(S[i])+O c c\left(S[i], I_{b}(i+1)\right), 0 \leq i<|S| \\
l_{0}\left(i, I_{2}\right.
\end{array}\right.
$$

where $\mathrm{I}_{\mathrm{a}}(\mathrm{i})$ and $\mathrm{I}_{\mathrm{b}}(\mathrm{i})$ represent the starting and end indices and $I_{a}(|S|)$ and $I_{l}(|S|)$ are initialized as 0 and $|G|$ respectively. The calculation stops if it encounters $\left.\mathrm{l}_{\mathrm{a}}(\mathrm{i}+1)\right\rangle$ $\mathrm{l}_{\mathrm{b}}(\mathrm{i}+1)$, and the condition $\mathrm{I}_{\text {a }}(\mathrm{i}) \leq \mathrm{l}_{\mathrm{b}}(\mathrm{i})$ stands if and only if the suffix of S starting at position i is a substring of G. The total
number of the occurrences is calculated as $1,(0)-1,(0)+1$ if $1_{a}(0) \leq 1_{b}(0)$, and 0 , otherwise.

Abstract

New high-throughput sequencing technologies have promoted the production of short reads with dramatically low unit cost. The explosive growth of short read datasets poses a challenge to the mapping of short reads to reference genomes, such as the human genome, in terms of alignment quality and execution speed.

We present CUSHAW, a parallelized short read aligner based on the compute unified device architecture (CUDA) paralle programming model. We exploit CUDA-compatible graphics hardware as accelerators to achieve fast speed. Our algorithm employs a quality-aware bounded search approach based on the Burrows-Wheeler transform (BWT) and the Ferragina Manzini (FM)-index to reduce the search space and achieve high alignment quality. Performance evaluation, using simulated as well as real short read datasets, reveals that our algorithm running on one or two graphics processing units (GPUs) achieves significant speedups in terms of execution time, while yielding comparable or even better alignment quality for paired-end alignments compared to three popular BWT-based aligners: Bowtie BWA and SOAP2 (availability: http://cushaw.sourceforge.net)

References

1. Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell: "CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform", Bioinformtics, 2012, under review.
2. Yongchao Liu and Bertil Schmidt: Evaluation of GPUbased seed generation for computational genomics based seed generation for computational genomics using Burrows-Wheeler transform. 11th IEEE
International Workshop on High Performance Computational Biology (HiCOMB 2012), under review. Computational Biology (HiCOMB 2012), under review, , compressed text. Journal of the ACM 2005,52:4

Contact

Yongchao Liu: liuy@uni-mainz.de Bertil Schmidt: bertil.schmidt@uni-mainz.de Douglas L. Maskell: asdouglas@ntu.edu.sg

Performance Evaluation

Datasets	Type	CUSHAW	Bowtie	BWA	SOAP2
SRR002273	SE	92.58	94.69	90.26	94.85
	PE	95.77	87.56	90.85	87.89
ERR0000589	SE	94.76	96.51	94.06	96.87
	PE	97.72	9.24	94.60	91.09
SRR033552	SE	88.71	91.70	89.12	92.03
	PE	94.46	86.86	92.35	82.17
SRR034966	SE	78.89	91.25	85.10	85.10
	PE	90.56	90.55	90.51	73.11
ERR024139	SE	89.69	92.09	93.28	92.68
	PE	95.11	87.58	94.46	86.25

Speedups over Bowtie

Speedups over BWA
 Dataset accession number in NCBI SRA

Speedups over SOAP2

SRR002273 ERR000589 SRRO33552 SRR034966 ERR024139 Dataset accession number in NCBI SRA

Percentages of aligned (paired) real reads for single-end and paired-end alignments.

A highest speedup of 3.1 (11.8
is achieved by CUSHAW is achieved by CUSHAW on
single Tesla C2050 GPU Bowtie on a single AMD 2.4 GHz CPU core for single-en (paired-end) alignments.

A highest speedup of 12 (14.5) is achieved by CUSHAW on
single Tesla C2050 GPU BWA on a single AMD 2.4 GH CPU core for single-end (paired-end) alignments.

A highest speedup of 7.9 (24.3) is achieved by CUSHAW on single Tesla C2050 GPU over GHz CPU a core for AMD 2.4 ${ }^{\text {(paired-end) alignments. }}$

