GPU based Block Matching using Orthogonal Thread Transformation

Machine Vision for Industrial Automation

Sudhakar Sah¹, Sunghoon Kim², Ill-Moek Kim², Nikhil Jotwani¹

¹CREST, KPIT Cummins Infosystems Ltd, Pune, India
²PRI, LGE Inc., South Korea

{sudhakar.sah, nikhil.jotwani} @kpitcummins.com, {sunghoon1.kim, ilmoek.kim@lge.com}@lge.com

Introduction

- Block matching (BM) technique is extensively used in motion estimation and object tracking problems.
- It is computationally expensive (exhaustive search technique)
- Highly data parallel algorithm
- Novel technique called orthogonal thread transformation (OTT) gives > 350 x speed up over CPU and 2.3 x compared to other GPU based implementations

Acronyms

BM - block matching, OTT - Orthogonal thread transformation, SAD - Sum of absolute difference, GPU - Graphical processing units, TFT - thin film transistor technology, FPS - frames per second

Methodology

Performance Analysis

- Block size 8 and search region around the block is 4 in all four directions
- Block size 16 and search region around the block is 8 in all four directions
- Block size 32 and search region around the block is 16 in all four directions

Block Matching

- Image is divided into blocks of equal size and search region is selected for each block
- Block from previous frame is compared with search region in current frame
- Sum of absolute distance (SAD) etc. used to determine the best match
- In CPU each SAD is processed sequentially making the algorithm computationally expensive
- In GPU all these blocks are computed in parallel - reducing the computation time drastically

Results

Performance for different image size, block size and search region

Performance for scalable block implementation

Benchmarking

Conclusion

- BM uses impractical in CPU for real time application
- CUDA implementation improves the performance up to 120 fps for 640 x 480 image and 16x16 block size
- 350x better than CPU version
- Scalable method can be for larger search region > 16x16
- 2.3 faster performance compared to other GPU implementations
- Real time performance for high resolution image used in vision based industrial automation

References