Background and goal

® Nonrigid registration

* A technique for defining a geometric relation between each point in images
- helps doctors in detecting cancers by monitoring changes in size
- creates novel images by combining different modality images
Examples of modality: CT, PET, and MR
* Nonrigid registration is a compute-intensive application because it deals with
deformable objects, which require many degrees of freedom
 Many researchers accelerated registration using the GPU
- Multimodal registration has not been supported by GPU implementations
- Mutual information must be computed for multimodal registration
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W Our goal

* Acceleration of mutual information computation for nonrigid registration

B Technical issue

* Fast mutual information computation with using shared memory
- Shared memory is not large enough to deal with mutual information

Nonrigid registration algorithm

W Registration strategy

* Many algorithms solve registration problems through optimization of a similarity
function, which represents how similar the images are

* |terative methods such as steepest descent is used for optimization

* Objects are deformed at every optimization step according to similarity values

* Hierarchal data structure is usually employed to reduce computational cost

B Normalized mutual information

* A robust similarity measure [1] used for
multimodal registration (- £
« Joint histograms must be constructed “l T
to obtain mutual information :
- A joint histogram is a 2-D matrix ; . .1
containing the number of intensities Images

at the same position

B B-spline deformation model [2]

» Deformation is locally controlled by
using a mesh of control points
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Previous method

B Technical issues in mutual information computation

 Joint histograms are not small enough to be stored in shared memory
- A joint histogram for n grayscale levels contains 172 bins
- Data size reaches 256 KB if /=256 and each bin has 4-byte data
* |rregular access to histogram data
* Atomic operations are required
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. Image
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B Shams’ method [3]

* Each thread has its local joint histogram to avoid atomic operations
* Local histograms are then merged into a single histogram by parallel reduction
* Histograms are stored in global memory

Our method
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m Key idea for data size reduction

 Joint histograms are sparse data
* Our method reduces data size by
eliminating empty bins far from g
the diagonal of the 2-D matrix , BRI 5

- Plots in joint histograms come ~ ’ R B 0 R B
together around the diagonal,

as the floating image converges to an optimal solution
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M Qur data structure

* Bins within parallelogram AL) are transformed into dense data structure
« Data size of AL)
- nL in bytes if each bin has 8-bit data
- Transformed data structure can be stored in shared memory if L < 196
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M Proposed algorithm

« Qur algorithm switches its behavior at every optimization step
- If all plots exist within A L), bins within A L) are updated using shared memory
- Otherwise, all bins are computed using global memory as Shams [3] do
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- Our method stores ¢., in shared memory D
because it can be reused between different
voxels (i.e., threads) I I >
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Experiments

B Experimental setup

« Performance comparison with Shams’ method [3] and a multi-threaded CPU
Implementation

C1Dataset
4 CT images of the liver
¢ 512x512x256 voxel with 256 grayscale

levels
 Voxel size: 0.67x0.67x0.67 mm

[OMachine Before

 GPU: NVIDIA GeForce GTX 580 (VRAM capacity: 1.5 GB)
 CPU: Intel Core 15 2500K 3.3 GHz (4 cores, RAM capacity: 16 GB)
 Windows 7, CUDA 4.0, and driver 285.62

[l Parameter configuration Hierarchy level 1 2 3
* 3-levels of hierarchy Voxel size (mm) 2.68 1.34 0.67
* Our method uses shared  \/glume size
memory at the 2nd and (voxel)
the 3rd levels

128x128x64 256x256x128 512x512x256

Control point

; 42.88 21.44 10.72
spacing (mm)

B Performance results 400 3707
@ Multithreaded CPU B Our method B Shams' method
0 Joint histogram computation 550 309.1 301.5
- 3X speedup over [3] O 268.2
5250
.. . . E
[0 Nonrigid registration i
- 1.3-1.4X speedup over [3] F10
_6.1- %100 73.8
6.1 6.9)§ speedup over 3 - 56 1 $56 62
the multi-threaded CPU 50 +— i - a
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® Breakdown analysis of execution time

« Effective memory bandwidth increases from 9 GB/s to 27 GB/s

* But, the effective bandwidth is equivalent to 14% of peak bandwidth (192 GB/s)

« This lower efficiency is mainly due to the 3rd level, in which different threads
frequently update the same bin as the registration process converges to a

solution
CPU version Our method Shams’ method [3]

FCIErE 1 2 3 1 2 3 1 2 3
level
Gradient 072 460 3710 012 070 536 012 088 @ 7.33
computation
Similarity 003 031 091 001 002 013 001 007 067
computation
Deformation = 0.31 223 1534 0.05 036 247 005 036 247
Others 001 001 001 0.01 001 001 001 001 0.0
Total 107 697 5336 019 109 797 019 132 10.48
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