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Background and goal 

 Nonrigid registration 
 

• A technique for defining a geometric relation between each point in images 

        - helps doctors in detecting cancers by monitoring changes in size 

        - creates novel images by combining different modality images 

          Examples of modality: CT, PET, and MR 

• Nonrigid registration is a compute-intensive application because it deals with 

deformable objects, which require many degrees of freedom 

• Many researchers accelerated registration using the GPU 

     - Multimodal registration has not been supported by GPU implementations 

     - Mutual information must be computed for multimodal registration 

   

 

 

 

 

 

 

 

 

 

 

 Our goal 
 

• Acceleration of mutual information computation for nonrigid registration 

 

 Technical issue 
 

• Fast mutual information computation with using shared memory 

        - Shared memory is not large enough to deal with mutual information 

 Experimental setup 
 

• Performance comparison with Shams’ method [3] and a multi-threaded CPU 

implementation 

 

Dataset 

• 4 CT images of the liver 

• 512x512x256 voxel with 256 grayscale 

levels 

• Voxel size: 0.67x0.67x0.67 mm 

 

Machine 

• GPU: NVIDIA GeForce GTX 580 (VRAM capacity: 1.5 GB) 

• CPU: Intel Core i5 2500K 3.3 GHz (4 cores, RAM capacity: 16 GB) 

• Windows 7, CUDA 4.0, and driver 285.62 

 

Parameter configuration 

• 3-levels of hierarchy 

• Our method uses shared 

memory at the 2nd and 

the 3rd levels 

 

 

 Performance results 
 

 Joint histogram computation 

        - 3X speedup over [3] 

 

 Nonrigid registration 

        - 1.3-1.4X speedup over [3] 

        - 6.1-6.9X speedup over 

          the multi-threaded CPU 

          implementation 

 

 Breakdown analysis of execution time 
 

• Effective memory bandwidth increases from 9 GB/s to 27 GB/s 

• But, the effective bandwidth is equivalent to 14% of peak bandwidth (192 GB/s) 

• This lower efficiency is mainly due to the 3rd level, in which different threads 

frequently update the same bin as the registration process converges to a 

solution 

Hierarchy level 1 2 3 

Voxel size (mm) 2.68 1.34 0.67 

Volume size 

(voxel) 
128x128x64 256x256x128 512x512x256 

Control point 

spacing (mm) 
42.88 21.44 10.72 

Nonrigid registration algorithm 

 Registration strategy 
 

• Many algorithms solve registration problems through optimization of a similarity 

function, which represents how similar the images are 

• Iterative methods such as steepest descent is used for optimization 

• Objects are deformed at every optimization step according to similarity values 

• Hierarchal data structure is usually employed to reduce computational cost 

 

 Normalized mutual information 
 

• A robust similarity measure [1] used for 

multimodal registration 

• Joint histograms must be constructed 

to obtain mutual information 

        - A joint histogram is a 2-D matrix 

          containing the number of intensities 

          at the same position 

 

 B-spline deformation model [2] 
 

• Deformation is locally controlled by 

using a mesh of control points 
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 Technical issues in mutual information computation 
 

• Joint histograms are not small enough to be stored in shared memory 

        - A joint histogram for n grayscale levels contains n２ bins 

        - Data size reaches 256 KB if n=256 and each bin has 4-byte data  

• Irregular access to histogram data 

• Atomic operations are required 

to serialize simultaneous 

accesses to the same bin 

 

 

 

 

 

 Shams’ method [3] 
 

• Each thread has its local joint histogram to avoid atomic operations 

• Local histograms are then merged into a single histogram by parallel reduction 

• Histograms are stored in global memory 

Previous method Experiments 
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Our method 

Before After 

CPU version Our method Shams’ method [3] 

Hierarchy 

level 
1 2 3 1 2 3 1 2 3 

Gradient 

computation 
0.72 4.60 37.10 0.12 0.70 5.36 0.12 0.88 7.33 

Similarity 

computation 
0.03 0.31 0.91 0.01 0.02 0.13 0.01 0.07 0.67 

Deformation 0.31 2.23 15.34 0.05 0.36 2.47 0.05 0.36 2.47 

Others 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Total 1.07 6.97 53.36 0.19 1.09 7.97 0.19 1.32 10.48 

Key idea for data size reduction 
 

• Joint histograms are sparse data 

• Our method reduces data size by 

eliminating empty bins far from 

the diagonal of the 2-D matrix 

        - Plots in joint histograms come 

          together around the diagonal, 

          as the floating image converges to an optimal solution 

 

Our data structure 
 

• Bins within parallelogram P(L) are transformed into dense data structure  

• Data size of P(L) 

        - nL in bytes if each bin has 8-bit data 

        - Transformed data structure can be stored in shared memory if L < 196 

 

 

 

 

 

 

 

 

 

Proposed algorithm 
 

• Our algorithm switches its behavior at every optimization step 

        - If all plots exist within P(L), bins within P(L) are updated using shared memory 

        - Otherwise, all bins are computed using global memory as Shams [3] do 

 

 Acceleration of B-spline deformation 
 

 Data reuse 

        -  

 

 

 

 Divergent branch elimination 

        - Dummy control points are placed along the 

          boundary to eliminate branches 
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