
Optimal heuristic searches such as A* search are commonly used for low-dimensional planning such as 2D path finding. These
algorithms however, typically do not scale well to high-dimensional planning problems such as motion planning for robotic arms,
computing motion trajectories for non-holonomic robotic vehicles and motion synthesis for humanoid characters. A recently
developed randomized version of A* search, called R* search, scales to higher-dimensional planning problems by trading off
deterministic optimality guarantees of A* for probabilistic sub-optimality guarantees. In this paper, we show that in addition to its
scalability, R* lends itself well to a parallel implementation. In particular, we demonstrate how R* can be implemented on GPU.
On the theoretical side, the GPU version of R*, called R*GPU, preserves all the theoretical properties of R* including its
probabilistic bounds on sub-optimality. On the experimental side, we show that R*GPU consistently produces lower cost
solutions, scales better in terms of memory, and runs faster than R*. These results hold for both motion planning for 6DOF robot
a r m a s w e l l s i m p l e 2 D p a t h f i n d i n g s h o w n b y o u r d e t a i l e d e x p e r i m e n t a l a n a l y s i s s e c t i o n .

AbstractAbstract

High-Dimensional Planning on the GPU
Mark Henderson, Joseph T. Kider Jr., Maxim Likhachev, and Alla Safonova

SIG Center for Computer Graphics, University of Pennsylvania
mahee@seas.upenn.edu, kiderj@seas.upenn.edu, maximl@seas.upenn.edu, alla@seas.upenn.edu

Related WorkRelated Work
GPU Accelerated Path Finding [Bleiweiss 08]

• Optimally Navigate Agents
• Planning for 2D environments
• Exploits explicit Parallelism of multi-agent navigation planning
• A* Search kernals for many agents

R* Search [Likhachev + Stentz 08] – Randomized Version of A*
• Depends less on the quality of guidance of the heuristic function
• Solves more high dimensional robot arm maps
• Struggles to solve maps with high object density

A* Search [Nilsson 71] – A* Search

Experimental Results on a Simulated Robotic ArmExperimental Results on a Simulated Robotic Arm

6
D

O
F

R
ob

ot
ic

 A
rm

GPU Cost = 78 GPU Cost = 81 CPU Cost = 89 CPU Cost = 101

Detailed Experimental ResultsDetailed Experimental Results
90 randomly generated 2D grid worlds of varying obstacle density for fast (simple) and

artificially time consuming (hard) edge cost expansions

53 randomly generated high dimensional 6 degree of freedom robotic arm tested with 3 settings of ε
(Resulting State Space is over 3 billion states)

R*GPU outperforms CPU version of R* as obstacle density grows and cost computation becomes time consuming

Parallelization of R* Search (R*GPU)Parallelization of R* Search (R*GPU)

R* Search AlgorithmR* Search Algorithm
R* search operates by decomposing the usual single-shot A* search into a series of properly-scheduled short-range and

easy-to-solve searches, each guided by the heuristic function towards a randomly chosen goal.
R* constructs a small graph Γ of sparsely placed states, connected to each other via edges.
R* constructs Γ in such a way as to provide explicit minimization of the solution cost and probabilistic guarantees on the

suboptimality of the solution.
R* grows Γ the same way A* grows a search tree
At every iteration, R* selects the next state s to expand from Γ
While normal A* expands s by generating all of its immediate successors, R* expands s by generating K random states

residing at some domain-dependent distance Δ from s.
If a goal state is within Δ from state s then it is also generated as the successor of s. R* grows Γ by adding these

successors of s and edges from s to them.
R* postpones finding these hard-to-solve paths until necessary and concentrates on finding the paths that are easy-to-

solve instead.
R* uses the (short-range) weighted A* searches with heuristics inflated by ε > 1 to compute these easy-to-solve paths.

It turns out that the decomposition of a single-shot search into a series of easy-to-solve short-range searches lends itself
naturally to a parallel implementation on GPU

While the main loop (figuring out what short-range search to run next) can run on CPU, each of the short-range searches
can run on a thread in CUDA

Each short-range search is independent of others which makes it suitable for running them in parallel.
Each search does not require vast amounts of memory since by definition it is easy to solve
Allows for multiple searches to share states in the DRAM on the GPU so there are no unnecessary expansions
Removed need for expensive hashing functions by checking if the location has been searched to in the array then

selectively overwriting cells when needed.
This reduces the divergent branches inherent in hashing functions.

Future WorkFuture Work
Work on an actual robotic arm to solve real

time motion planning problems

Expand for even higher dimensional joint
configurations and higher dimensional spaces
to make the algorithm even more robust

Apply to high dimensional planning for
human animation locomotion planning

Robust performance comparison to multi-
core and Larrabee implementations of our
parallel algorithm

R* R* PseudocodePseudocode 2D Planning2D Planning
- Example of 2D planning scenario for 24-connected grid-world

(200x200 cells)

- 3 different values for epsilon (2, 1.5, 1)

R*GPU R*GPU PseudocodePseudocode R*GPU PlanningR*GPU Planning

