High-Dimensional Planning on the GPU

Mark Henderson, Joseph T. Kider Jr., Maxim Likhachev, and Alla Safonova

SIG Center for Computer Graphics, University of Pennsylvania
mahee@seas.upenn.edu, kiderj@seas.upenn.edu, maximl@seas.upenn.edu, alla@seas.upenn.edu

Abstract

Optimal heuristic searches such as A* search are commonly used for low-dimensional planning such as 2D path finding. These
algorithms however, typically do not scale well to high-dimensional planning problems such as motion planning for robotic arms,
computing motion trajectories for non-holonomic robotic vehicles and motion synthesis for humanoid characters. A recently
developed randomized version of A* search, called R* search, scales to higher-dimensional planning problems by trading off
deterministic optimality guarantees of A* for probabilistic sub-optimality guarantees. In this paper, we show that in addition to its
scalability, R* lends itself well to a parallel implementation. In particular, we demonstrate how R* can be implemented on GPU.
On the theoretical side, the GPU version of R*, called R*GPU, preserves all the theoretical properties of R* including its
probabilistic bounds on sub-optimality. On the experimental side, we show that R*GPU consistently produces lower cost
solutions, scales better in terms of memory, and runs faster than R*. These results hold for both motion planning for 6DOF robot
arm as well simple 2D path finding shown by our detailed experimental analysis section.

Parallelization of R* Search (R*GPU)

® |t turns out that the decomposition of a single-shot search into a series of easy-to-solve short-range searches lends itself
naturally to a parallel implementation on GPU

= While the main loop (figuring out what short-range search to run next) can run on CPU, each of the short-range searches
can run on a thread in CUDA

= Each short-range search is independent of others which makes it suitable for running them in parallel.

= Each search does not require vast amounts of memory since by definition it is easy to solve

= Allows for multiple searches to share states in the DRAM on the GPU so there are no unnecessary expansions

= Removed need for expensive hashing functions by checking if the location has been searched to in the array then
selectively overwriting cells when needed.

= This reduces the divergent branches inherent in hashing functions.

R* Search Algorithm

= R* search operates by decomposing the usual single-shot A* search into a series of properly-scheduled short-range and
easy-to-solve searches, each guided by the heuristic function towards a randomly chosen goal.

= R* constructs a small graph I' of sparsely placed states, connected to each other via edges.

= R* constructs I" in such a way as to provide explicit minimization of the solution cost and probabilistic guarantees on the
suboptimality of the solution.

= R* grows I" the same way A* grows a search tree

= At every iteration, R* selects the next state s to expand from I

= While normal A* expands s by generating all of its immediate successors, R* expands s by generating K random states
residing at some domain-dependent distance A from s.

= |f a goal state is within A from state s then it is also generated as the successor of s. R* grows I" by adding these
successors of s and edges from s to them.

= R* postpones finding these hard-to-solve paths until necessary and concentrates on finding the paths that are easy-to-
solve instead.

= R* uses the (short-range) weighted A* searches with heuristics inflated by € > 1 to compute these easy-to-solve paths.

R* Pseudocode

select unexpanded state « € I (prionity is given w states not labeled AVOID)

2D Planning

- Example of 2D planning scenario for 24-connected grid-world
(200x200 cells)

- 3 different values for epsilon (2, 1.5, 1)

if path that corresponds 1o the edge

- » has not been computed vet
try 1o compute this path

4 if failed then label state = as AVOID

5 else

[

update (=) based on the cost of the found path and «(fp(s))
label & as AVOID

iFq(s) > wh{sgam. s

8 else Vexpand ste s (grow)

9 et SUCCS(s) be W randomly chosen states ot distance A from s —ntlf

0 i o within A, then add it to SUCCS (s -~ o~
11 foreachstate s' € SUCCS (), add 5" and edge s — " 10 T, set bp(s’
Figure : Singe iteration of R*

R*GPU Pseudocode R*GPU Planning

tes in high level puth 10 GPL

Detailed Experimental Results

® 90 randomly generated 2D grid worlds of varying obstacle density for fast (simple) and
artificially time consuming (hard) edge cost expansions

= 53 randomly generated high dimensional 6 degree of freedom robotic arm tested with 3 settings of €
(Resulting State Space is over 3 billion states)

= R*GPU outperforms CPU version of R* as obstacle density grows and cost computation becomes time consuming

2D Planning 6 DOF Robot Arm
Ohstacle Performance Planner (Simple) (Hard) Performance € R*GPU/R
Density Measure Meusure
Best Cost R*GPU 32218 31015 — = ==
2% R 3675 316.20] 2 0.965
°F Suce R=GPLI 69.87 6.9 Best Cost 4 0.921
Suce R e
R 2461.55 4.1 I 0918
: ROGPU M2 328.23 e 5SS
i Best Cost R 349.90 348,89 —— _Jl ~::?:(\
S R*GPU 23.56 4.21 ¥ al suce 41,210
) R 45.54 215 6 24.917
Best Cost S [Eer ne 2 24899
o nfi ok s - 5
M " REGPU 504 ahi #of Local A ‘-‘l 44,.:_:(1:
s R 15 W i 64.262

Related Work

Experimental Results on a Simulated Robotic Arm

Future Work

_'.”““:\“"—1

GPU Accelerated Path Finding [Bleiweiss 08]
« Optimally Navigate Agents
< Planning for 2D environments
< Exploits explicit Parallelism of multi-agent navigation planning
* A= Search kernals for many agents

R* Search [Likhachev + Stentz 08] — Randomized Version of A*
« Depends less on the quality of guidance of the heuristic function
« Solves more high dimensional robot arm maps
« Struggles to solve maps with high object density

6 DOF Robotic Arm

= Work on an actual robotic arm to solve real
: L time motion planning problems

= Expand for even higher dimensional joint
configurations and higher dimensional spaces
to make the algorithm even more robust

= Apply to high dimensional planning for
human animation locomotion planning

= Robust performance comparison to multi-
core and Larrabee implementations of our
parallel algorithm

A* Search [Nilsson 71] - A* Search

GPU Cost =78

GPU Cost =81

CPU Cost =89 CPU Cost =101

