High-Dimensional Planning on the GPU Mark Henderson, Joseph T. Kider Jr., Maxim Likhachev, and Alla Safonova SIG Center for Computer Graphics, University of Pennsylvania mahee@seas.upenn.edu, kiderj@seas.upenn.edu, maximl@seas.upenn.edu, alla@seas.upenn.edu #### Abstract Optimal heuristic searches such as A* search are commonly used for low-dimensional planning such as 2D path finding. These algorithms however, typically do not scale well to high-dimensional planning problems such as motion planning for robotic arms, computing motion trajectories for non-holonomic robotic vehicles and motion synthesis for humanoid characters. A recently developed randomized version of A* search, called R* search, scales to higher-dimensional planning problems by trading off deterministic optimality guarantees of A* for probabilistic sub-optimality guarantees. In this paper, we show that in addition to its scalability, R* lends itself well to a parallel implementation. In particular, we demonstrate how R* can be implemented on GPU. On the theoretical side, the GPU version of R*, called R*GPU, preserves all the theoretical properties of R* including its probabilistic bounds on sub-optimality. On the experimental side, we show that R*GPU consistently produces lower cost solutions, scales better in terms of memory, and runs faster than R*. These results hold for both motion planning for 6DOF robot arm as well simple 2D path finding shown by our detailed experimental analysis section. ## **R* Search Algorithm** - R* search operates by decomposing the usual single-shot A* search into a series of properly-scheduled short-range and easy-to-solve searches, each guided by the heuristic function towards a randomly chosen goal. - R* constructs a small graph Γ of sparsely placed states, connected to each other via edges. - R* constructs Γ in such a way as to provide explicit minimization of the solution cost and probabilistic guarantees on the suboptimality of the solution. - R* grows Γ the same way A* grows a search tree - At every iteration, R* selects the next state s to expand from Γ - While normal A* expands s by generating all of its immediate successors, R* expands s by generating K random states residing at some domain-dependent distance Δ from s. - If a goal state is within Δ from state s then it is also generated as the successor of s. R* grows Γ by adding these successors of s and edges from s to them. - R* postpones finding these hard-to-solve paths until necessary and concentrates on finding the paths that are easy-tosolve instead. - R* uses the (short-range) weighted A* searches with heuristics inflated by ε > 1 to compute these easy-to-solve paths. #### R* Pseudocode - select unexpanded state $s \in \Gamma$ (priority is given to states not labeled AVOID) if path that corresponds to the edge $bp(s) \rightarrow s$ has not been computed yet - try to compute this path - if failed then label state s as AVOID - update g(s) based on the cost of the found path and g(bp(s)) - if $g(s) > w h(s_{\text{start}}, s)$ label s as AVOID - 8 else //expand state s (grow Γ) - let SUCCS(s) be K randomly chosen states at distance Δ from s - if goal state within Δ , then add it to SUCCS(s)for each state $s' \in SUCCS(s)$, add s' and edge s Figure: Singe iteration of R* # **2D Planning** - Example of 2D planning scenario for 24-connected grid-world (200x200 cells) - 3 different values for epsilon (2, 1,5, 1) ### Parallelization of R* Search (R*GPU) - It turns out that the decomposition of a single-shot search into a series of easy-to-solve short-range searches lends itself naturally to a parallel implementation on GPU - While the main loop (figuring out what short-range search to run next) can run on CPU, each of the short-range searches can run on a thread in CUDA - Each short-range search is independent of others which makes it suitable for running them in parallel - Each search does not require vast amounts of memory since by definition it is easy to solve - Allows for multiple searches to share states in the DRAM on the GPU so there are no unnecessary expansions - Removed need for expensive hashing functions by checking if the location has been searched to in the array then selectively overwriting cells when needed. - This reduces the divergent branches inherent in hashing functions. #### R*GPU Pseudocode - Loop until goal is reached retrieve minimum n searches from heap send searches to GPU generate random succs for all searche - retrieve search costs from GPU if search succeeds - add succes from search to heap if goal has been reached retrieve high level path from start to goal - send search from state n to state n+1 for all states in high level path to GPU retrieve path between high level states from GPU combine into one path ## **R*GPU Planning** ## **Detailed Experimental Results** - 90 randomly generated 2D grid worlds of varying obstacle density for fast (simple) and artificially time consuming (hard) edge cost expansions - 53 randomly generated high dimensional 6 degree of freedom robotic arm tested with 3 settings of ε (Resulting State Space is over 3 billion states) - R*GPU outperforms CPU version of R* as obstacle density grows and cost computation becomes time consuming | 2D Planning | | | | | |---------------------|------------------------|-------------|------------------|------------------| | Obstacle
Density | Performance
Measure | Planner | (Simple) | (Hard) | | 20% | Best Cost | R*GPU
R* | 322.18
316.75 | 310.15
316.20 | | | Succ R* | R*GPU
R* | 69.87
2461.55 | 6.9
4.1 | | 40% | Best Cost | R*GPU
R* | 347.72
349.90 | 328.23
348.89 | | | Succ R* | R*GPU
R* | 23.56
45.54 | 4.21
2.15 | | 60% | Best Cost | R*GPU
R* | 447.57
499.60 | n/a
n/a | | | Succ R* | R*GPU
R* | 5.94
1.5 | n/a
n/a | | 6 DOF Robot Arm | | | | | |------------------------|------------|----------|--|--| | Performance
Measure | ϵ | R*GPU/R* | | | | | 2 | 0.965 | | | | Best Cost | 4 | 0.921 | | | | | 6 | 0.918 | | | | | 2 | 38.5556 | | | | # of Succ R* | 4 | 37.516 | | | | | 6 | 24.917 | | | | | 2 | 24.899 | | | | # of Local A* | 4 | 44.268 | | | | | 6 | 64.262 | | | ### **Related Work** #### GPU Accelerated Path Finding [Bleiweiss 08] - · Optimally Navigate Agents - · Planning for 2D environments - Exploits explicit Parallelism of multi-agent navigation planning - · A* Search kernals for many agents #### R* Search [Likhachev + Stentz 08] - Randomized Version of A* - · Depends less on the quality of guidance of the heuristic function - · Solves more high dimensional robot arm maps - · Struggles to solve maps with high object density #### A* Search [Nilsson 71] - A* Search ## **Experimental Results on a Simulated Robotic Arm** ### **Future Work** - Work on an actual robotic arm to solve real time motion planning problems - Expand for even higher dimensional joint configurations and higher dimensional spaces to make the algorithm even more robust - Apply to high dimensional planning for human animation locomotion planning - Robust performance comparison to multicore and Larrabee implementations of our parallel algorithm