High-Dimensional Planning on the GPU

Mark Henderson, Joseph T. Kider Jr., Maxim Likhachev, and Alla Safonova SIG Center for Computer Graphics, University of Pennsylvania

mahee@seas.upenn.edu, kiderj@seas.upenn.edu, maximl@seas.upenn.edu, alla@seas.upenn.edu

Abstract

Optimal heuristic searches such as A* search are commonly used for low-dimensional planning such as 2D path finding. These algorithms however, typically do not scale well to high-dimensional planning problems such as motion planning for robotic arms, computing motion trajectories for non-holonomic robotic vehicles and motion synthesis for humanoid characters. A recently developed randomized version of A* search, called R* search, scales to higher-dimensional planning problems by trading off deterministic optimality guarantees of A* for probabilistic sub-optimality guarantees. In this paper, we show that in addition to its scalability, R* lends itself well to a parallel implementation. In particular, we demonstrate how R* can be implemented on GPU. On the theoretical side, the GPU version of R*, called R*GPU, preserves all the theoretical properties of R* including its probabilistic bounds on sub-optimality. On the experimental side, we show that R*GPU consistently produces lower cost solutions, scales better in terms of memory, and runs faster than R*. These results hold for both motion planning for 6DOF robot arm as well simple 2D path finding shown by our detailed experimental analysis section.

R* Search Algorithm

- R* search operates by decomposing the usual single-shot A* search into a series of properly-scheduled short-range and easy-to-solve searches, each guided by the heuristic function towards a randomly chosen goal.
- R* constructs a small graph Γ of sparsely placed states, connected to each other via edges.
- R* constructs Γ in such a way as to provide explicit minimization of the solution cost and probabilistic guarantees on the suboptimality of the solution.
- R* grows Γ the same way A* grows a search tree
- At every iteration, R* selects the next state s to expand from Γ
- While normal A* expands s by generating all of its immediate successors, R* expands s by generating K random states residing at some domain-dependent distance Δ from s.
- If a goal state is within Δ from state s then it is also generated as the successor of s. R* grows Γ by adding these successors of s and edges from s to them.
- R* postpones finding these hard-to-solve paths until necessary and concentrates on finding the paths that are easy-tosolve instead.
- R* uses the (short-range) weighted A* searches with heuristics inflated by ε > 1 to compute these easy-to-solve paths.

R* Pseudocode

- select unexpanded state $s \in \Gamma$ (priority is given to states not labeled AVOID) if path that corresponds to the edge $bp(s) \rightarrow s$ has not been computed yet
- try to compute this path
- if failed then label state s as AVOID
- update g(s) based on the cost of the found path and g(bp(s))
- if $g(s) > w h(s_{\text{start}}, s)$ label s as AVOID
- 8 else //expand state s (grow Γ)
- let SUCCS(s) be K randomly chosen states at distance Δ from s
- if goal state within Δ , then add it to SUCCS(s)for each state $s' \in SUCCS(s)$, add s' and edge s

Figure: Singe iteration of R*

2D Planning

- Example of 2D planning scenario for 24-connected grid-world (200x200 cells)
- 3 different values for epsilon (2, 1,5, 1)

Parallelization of R* Search (R*GPU)

- It turns out that the decomposition of a single-shot search into a series of easy-to-solve short-range searches lends itself naturally to a parallel implementation on GPU
- While the main loop (figuring out what short-range search to run next) can run on CPU, each of the short-range searches can run on a thread in CUDA
- Each short-range search is independent of others which makes it suitable for running them in parallel
- Each search does not require vast amounts of memory since by definition it is easy to solve
- Allows for multiple searches to share states in the DRAM on the GPU so there are no unnecessary expansions
- Removed need for expensive hashing functions by checking if the location has been searched to in the array then selectively overwriting cells when needed.
- This reduces the divergent branches inherent in hashing functions.

R*GPU Pseudocode

- Loop until goal is reached retrieve minimum n searches from heap send searches to GPU generate random succs for all searche
- retrieve search costs from GPU if search succeeds

- add succes from search to heap if goal has been reached retrieve high level path from start to goal
- send search from state n to state n+1 for all states in high level path to GPU retrieve path between high level states from GPU combine into one path

R*GPU Planning

Detailed Experimental Results

- 90 randomly generated 2D grid worlds of varying obstacle density for fast (simple) and artificially time consuming (hard) edge cost expansions
- 53 randomly generated high dimensional 6 degree of freedom robotic arm tested with 3 settings of ε (Resulting State Space is over 3 billion states)
- R*GPU outperforms CPU version of R* as obstacle density grows and cost computation becomes time consuming

2D Planning				
Obstacle Density	Performance Measure	Planner	(Simple)	(Hard)
20%	Best Cost	R*GPU R*	322.18 316.75	310.15 316.20
	Succ R*	R*GPU R*	69.87 2461.55	6.9 4.1
40%	Best Cost	R*GPU R*	347.72 349.90	328.23 348.89
	Succ R*	R*GPU R*	23.56 45.54	4.21 2.15
60%	Best Cost	R*GPU R*	447.57 499.60	n/a n/a
	Succ R*	R*GPU R*	5.94 1.5	n/a n/a

6 DOF Robot Arm				
Performance Measure	ϵ	R*GPU/R*		
	2	0.965		
Best Cost	4	0.921		
	6	0.918		
	2	38.5556		
# of Succ R*	4	37.516		
	6	24.917		
	2	24.899		
# of Local A*	4	44.268		
	6	64.262		

Related Work

GPU Accelerated Path Finding [Bleiweiss 08]

- · Optimally Navigate Agents
- · Planning for 2D environments
- Exploits explicit Parallelism of multi-agent navigation planning
- · A* Search kernals for many agents

R* Search [Likhachev + Stentz 08] - Randomized Version of A*

- · Depends less on the quality of guidance of the heuristic function
- · Solves more high dimensional robot arm maps
- · Struggles to solve maps with high object density

A* Search [Nilsson 71] - A* Search

Experimental Results on a Simulated Robotic Arm

Future Work

- Work on an actual robotic arm to solve real time motion planning problems
- Expand for even higher dimensional joint configurations and higher dimensional spaces to make the algorithm even more robust
- Apply to high dimensional planning for human animation locomotion planning
- Robust performance comparison to multicore and Larrabee implementations of our parallel algorithm