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Abstract

Optimal heuristic searches such as A* search are commonly used for low-dimensional planning such as 2D path finding. These
algorithms however, typically do not scale well to high-dimensional planning problems such as motion planning for robotic arms,
computing motion trajectories for non-holonomic robotic vehicles and motion synthesis for humanoid characters. A recently
developed randomized version of A* search, called R* search, scales to higher-dimensional planning problems by trading off
deterministic optimality guarantees of A* for probabilistic sub-optimality guarantees. In this paper, we show that in addition to its
scalability, R* lends itself well to a parallel implementation. In particular, we demonstrate how R* can be implemented on GPU.
On the theoretical side, the GPU version of R*, called R*GPU, preserves all the theoretical properties of R* including its
probabilistic bounds on sub-optimality. On the experimental side, we show that R*GPU consistently produces lower cost
solutions, scales better in terms of memory, and runs faster than R*. These results hold for both motion planning for 6DOF robot
arm as well simple 2D path finding shown by our detailed experimental analysis section.

Parallelization of R* Search (R*GPU)

® |t turns out that the decomposition of a single-shot search into a series of easy-to-solve short-range searches lends itself
naturally to a parallel implementation on GPU

= While the main loop (figuring out what short-range search to run next) can run on CPU, each of the short-range searches
can run on a thread in CUDA

= Each short-range search is independent of others which makes it suitable for running them in parallel.

= Each search does not require vast amounts of memory since by definition it is easy to solve

= Allows for multiple searches to share states in the DRAM on the GPU so there are no unnecessary expansions

= Removed need for expensive hashing functions by checking if the location has been searched to in the array then
selectively overwriting cells when needed.

= This reduces the divergent branches inherent in hashing functions.

R* Search Algorithm

= R* search operates by decomposing the usual single-shot A* search into a series of properly-scheduled short-range and
easy-to-solve searches, each guided by the heuristic function towards a randomly chosen goal.

= R* constructs a small graph I' of sparsely placed states, connected to each other via edges.

= R* constructs I" in such a way as to provide explicit minimization of the solution cost and probabilistic guarantees on the
suboptimality of the solution.

= R* grows I" the same way A* grows a search tree

= At every iteration, R* selects the next state s to expand from I

= While normal A* expands s by generating all of its immediate successors, R* expands s by generating K random states
residing at some domain-dependent distance A from s.

= |f a goal state is within A from state s then it is also generated as the successor of s. R* grows I" by adding these
successors of s and edges from s to them.

= R* postpones finding these hard-to-solve paths until necessary and concentrates on finding the paths that are easy-to-
solve instead.

= R* uses the (short-range) weighted A* searches with heuristics inflated by € > 1 to compute these easy-to-solve paths.

R* Pseudocode
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Detailed Experimental Results

® 90 randomly generated 2D grid worlds of varying obstacle density for fast (simple) and
artificially time consuming (hard) edge cost expansions

= 53 randomly generated high dimensional 6 degree of freedom robotic arm tested with 3 settings of €
(Resulting State Space is over 3 billion states)

= R*GPU outperforms CPU version of R* as obstacle density grows and cost computation becomes time consuming
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GPU Accelerated Path Finding [Bleiweiss 08]
« Optimally Navigate Agents
< Planning for 2D environments
< Exploits explicit Parallelism of multi-agent navigation planning
* A= Search kernals for many agents

R* Search [Likhachev + Stentz 08] — Randomized Version of A*
« Depends less on the quality of guidance of the heuristic function
« Solves more high dimensional robot arm maps
« Struggles to solve maps with high object density

6 DOF Robotic Arm

= Work on an actual robotic arm to solve real
: L time motion planning problems

= Expand for even higher dimensional joint
configurations and higher dimensional spaces
to make the algorithm even more robust

= Apply to high dimensional planning for
human animation locomotion planning

= Robust performance comparison to multi-
core and Larrabee implementations of our
parallel algorithm

A* Search [Nilsson 71] - A* Search

GPU Cost =78

GPU Cost =81

CPU Cost =89 CPU Cost =101




