Code Optimizations for High Performance GPU Computing

Yi Yang and Huiyang Zhou

Department of Electrical and Computer Engineering
North Carolina State University
Question to answer

- Given a task to accelerate some algorithm, e.g., solving PDE, image filtering, etc., using GPU computing

- How can we start? How can we systematically develop high performance GPGPU programs?
Outline

• Hardware abstraction
• A systematic approach to developing high performance GPGPU programs
• Optimization techniques with case studies
 – Coalesced memory accesses
 – Data reuse through thread (block) merge
 – Eliminating partition conflicts
 – Leveraging constant cache
• Conclusions
Hardware Abstraction of GPU Architecture

Based on this simple abstraction, develop a naïve implementation without considering optimizations.

Focuses: Data level parallelism Functional correctness
GPGPU Architecture

- Fast (local) communication among processors in a SM through shared memory
- Memory requests need to be evenly distributed among MCs to avoid conflicts/partition camping
Key to Performance

- Global memory access bandwidth
 - Coalesced global memory accesses
 - Memory partitions
- Fast data accesses
 - Shared memory
 - Constant Cache
 - Texture Cache
 - Register
- Balanced resource usage, balanced ILP and TLP
 - Thread level: register usage
 - Thread block level: shared memory usage,
Developing High Performance GPGPU Code

- Checking memory coalescing
- Converting non-coalesced accesses into coalesced
- Checking data dependencies and sharing patterns
- Thread & thread-block merge
- Data prefetching
- Vectorization for memory access bandwidth
- Removing memory partition camping
- Naïve code

Diagram:
- Global Memory
- High performance code
- Naïve code
- Vectorization for memory access bandwidth
- Processors arranged in a grid
Naïve Kernel

- Fine-grain data-level parallelism
- Compute one element/pixel in the output domain
- Example: Matrix multiplication

```c
float sum = 0;
for (int i=0; i<w; i++)
    sum+=A[idy][i]*B[i][idx];
C[idy][idx] = sum;
```

Naïve matrix multiplication
Physical Meaning of the Naïve Kernel

- One thread computes one element at (idx, idy) in the product matrix

```c
float sum = 0;
for (int i=0; i<w; i++)
    sum+=A[idy][i]*B[i][idx];
C[idy][idx] = sum;
```

Naïve matrix multiplication
Outline

• Hardware abstraction
• A systematic approach to developing high performance GPGPU Programs
• Optimization techniques with case studies
 – Coalesced memory accesses
 – Data reuse through thread (block) merge
 – Eliminating partition conflicts
 – Leveraging constant cache
• Conclusions
Case Study: Convolution

- A is input matrix
- B is 8x8 filter matrix
- C is output matrix

```c
float sum = 0;
for (j=0; j<8; j=j+1) {
    for (i=0; i<8; i=i+1) {
        float a;
        float b;
        a = A[idy-j][idx-i];
        b = B[j][i];
        sum += a*b;
    }
}
C[idy][idx] = sum;
```

Naïve version of Convolution
one thread computes one output
pixel at (idx, idy)
Coalesced Global Memory Access

- Needed by GPU to achieve high memory bandwidth
- Examined at the half-warp granularity
- Threads in a warp have consecutive thread ids
- Requirements for coalesced global memory accesses
 - Aligned:
 - Half of warp threads must access the data with starting address to be a multiple of 64 bytes
 - Sequential (less strict for GTX 280/480):
 - Half of warp threads must access the data sequentially
Checking coalesced memory accesses

for (i=0; i<8; i=i+1) {
 float a;
 float b;
 a = A[idy-j][idx-i];
 b = B[j][i];
 sum += a*b;
}

Inner loop of convolution

Access pattern of B[j][i]:
- When i = 0; B[j][0] for all the threads in a warp
- When i = 1; B[j][1] for all the threads in a warp
...

Therefore, it is not coalesced.
As B is a small kernel, we can store it in the shared memory or constant memory (cache).
Checking coalesced memory accesses

\[
\text{for } (i=0; i<8; i=i+1) \{
\quad \text{float } a; \\
\quad \text{float } b; \\
\quad a = A[idy-j][idx-i]; \\
\quad b = B[j][i]; \\
\quad \text{sum } += a*b; \\
\}\]

Inner loop of convolution

Access pattern of \(A[idy-j][idx-i] \)
When \(i = 0 \), \(A[idy-j][idx] \)
Checking coalesced memory accesses

for (i=0; i<8; i=i+1) {
 float a;
 float b;
 a = A[idy-j][idx-i];
 b = B[j][i];
 sum += a*b;
}

Inner loop of convolution

Access pattern of $A[idy-j][idx-i]$
When $i = 0$, $A[idy-j][idx]$
When $i = 1$, $A[idy-j][idx-1]$
Checking coalesced memory accesses

for (i=0; i<8; i=i+1) {
 float a;
 float b;
 a = A[idy-j][idx-i];
 b = B[j][i];
 sum += a*b;
}

Inner loop of convolution

Access pattern of A[idy-j][idx-i]
When i = 0, A[idy-j][idx]
When i = 1, A[idy-j][idx-1]
When i = 2, A[idy-j][idx-2]
Checking coalesced memory accesses

for (i=0; i<8; i=i+1) {
 float a;
 float b;
 a = A[idy-j][idx-i];
 b = B[j][i];
 sum += a*b;
}

Inner loop of convolution

Access pattern of $A[idy-j][idx-i]$ for the warp
When $i = 0$, $A[idy-j][idx]$
When $i = 1$, $A[idy-j][idx-1]$
When $i = 2$, $A[idy-j][idx-2]$
...
When $i = 7$, $A[idy-j][idx-7]$
Therefore, it is not coalesced. The warp accesses the data: $A[idy-j][idx-7:idx+31]$
Convert to coalesced accesses

```c
for (i=0; i<8; i=i+1) {
    float a;
    float b;
    a = A[idy-j][idx-i];
    b = B[j][i];
    sum += a*b;
}
```

Inner loop of convolution

- We preload data into shared memory. Then access it from shared memory. One warp (32 threads) loads 64 floats into shared memory.
Coalesced memory access

```c
__shared__ float shared_0[64];
shared_0[tidx]=A[idy-j][idx-32];
shared_0[tidx+32]=A[idy-j][idx]; // load data into shared memory
__syncthreads();
for (i=0; i<8; i=i+1)
{
    float a=shared_0[tidx+32]; // access data from shared memory
    float b=B[j][i];
    sum+=(a*b);
}
__syncthreads();
```

- 32 threads (one warp) in one thread block
- Each warp access 64 elements $A[idy-j][idx[tidx-32 : idx-tidx+31]$
- $(idx - tidx)$ is the start position of the thread block
Convolution: thread block merge

for \(i=0; i<8; i=i+1 \) {
 float a;
 float b;
 a = A[idy-j][idx-i];
 b = B[j][i];
 sum += a*b;
}

Inner loop of convolution

- Now one warp needs to load 64 floats for the inner loop
- There are some overlap between neighboring warps/thread blocks
 \[A[idy-j][idx-tidx-32 : idx-tidx+31] \]
- If we put more warps into one thread block, they can share the overlap part and reduce global memory access
Thread block merge

Parallelism impact
- Increase thread block workload
- Keep the thread workload

• Advantage:
 Don’t increase register pressure
• Disadvantage:
 Data must be in shared memory (slower than register)

Improve memory reuse by merging neighboring thread blocks
Code after thread block merge

```c
__shared__ float shared_0[256+32];
if (tidx<32) shared_0[tidx]=A[idy-j][idx-32];  // only first warp executes
shared_0[tidx+32]=A[idy-j][idx];
__syncthreads();
for (i=0; i<8; i=i+1)
{
    float a=shared_0[tidx+32];
    float b=B[j][i];
    sum+=a*b;
}
__syncthreads();
```

- 256 threads in one thread block
Case study: Convolution

The neighboring threads in Y direction have overlaps in A.

If we let one thread compute two output pixels in Y direction, we can reduce the data access of A.

```
float sum = 0;
for (j=0; j<8; j=j+1) {
    for (i=0; i<8; i=i+1) {
        float a;
        float b;
        a = A[idy-j][idx-i];
        b = B[j][i];
        sum += a*b;
    }
}
C[idy][idx] = sum;
```
Convolution: thread merge

- When we load 8 pixels from A (shared memory)
- We can do inner loop for one output pixel
- Or two pixels
- Three, or more

- So after we load data A from shared memory, we can keep it in the register to do more ALU computation
Code after thread merge

```c
float sum_0 = 0; sum_1 = 0;
for (j=0; j<8; j=j+1) {
    __shared__ float shared_0[256+32];
    if (tidx<32) shared_0[tidx]=A[idy-j][idx-32];
    shared_0[tidx+32]=A[idy-j][idx];
    __syncthreads();
    for (i=0; i<8; i=i+1)
    {
        float a=shared_0[tidx+32];
        float b_0=B[j][i];
        float b_1=B[j+1][i]; // we also compute another output pixel
        sum_0+=(a*b_0); // code for boundary check is ignored
        sum_1+=(a*b_1);
    }
    __syncthreads();
}
C[2*idy][idx] = sum; C[2*idy+1][idx] = sum;
```

- One thread computes two output pixels
Thread merge

Parallelism impact
• Increase thread workload
• Keep the thread block workload

• Advantage:
 Data can be in the register or shared memory
• Disadvantage:
 Increase the register pressure for single thread

Improve memory reuse by merging threads from neighboring thread blocks.
• 70% of theoretic computation power (1.35Tflops) of GTX 480

128 threads in one thread block and one thread computes 184 output pixels.
Case study: matrix vector multiplication

```c
float sum = 0;
for (i=0; i<w; i=i+1) {
    float a;
    float b;
    a = A[idx][i];
    b = B[i];
    sum += a*b;
}
C[idx] = sum;
```

Naïve version of MV
Partition camping

- If the width of A is multiple of partition size
- All thread blocks start from same partition
Eliminating Partition camping

- Let different thread blocks have different start points
Code to eliminate partition camping

```c
int start = (blockIdx.x*16); // different start points for different thread blocks
for (i=0; i<w; i=(i+16))
{
    int k=((start+i)%w);
    float a;
    float b;
    a = A[idx][k];
    b = B[k];
    sum += a*b;
}
C[idx]=sum;
```

- The un-optimized kernel is used to illustrate the code to remove partition camping
- Optimized kernel has 32 threads in one thread block and uses shared memory to avoid un-coalesced memory access
Matrix vector multiplication on GTX 280

Opti_PC: the optimized kernel without partition camping elimination
Matrix vector multiplication on GTX 480

- **Opti_PC**: the optimized kernel without partition camping elimination.
- **Partition camping elimination benefits 3K and 6K more because GTX 480 has 6 partitions.**
Compiling for High Performance GPGPU

Code: http://code.google.com/p/gpgpucompiler/

Naïve code

Vectorization for memory access bandwidth

Checking memory coalescing

Converting non-coalesced accesses into coalesced

Checking data dependencies and sharing patterns

Thread & thread-block merge

Data prefetching

Removing memory partition camping

High performance code
Outline

• Hardware abstraction
• A systematic approach to developing high performance GPGPU programs
• Optimization techniques with case studies
 – Coalesced memory accesses
 – Data reuse through thread (block) merge
 – Eliminating partition conflicts
 – Leveraging constant cache
• Conclusions
Leveraging constant cache (GTX 480)

- **Register**
 - Benefit: fastest, no latency
 - Limitation: no sharing between threads

- **Constant cache**
 - Benefit: up to 2TBytes/S
 - Limitation: 64kB const memory on GTX 480, sequential broadcast access

- **Shared memory**
 - Benefit: sharing in block with index
 - Limitation: up to 1TBytes/S

- **Texture cache**
 - Benefit: 2D cache automatically
 - Limitation: up to 334GBytes/S

```plaintext
r0 = r1 + r2*shared[k];
One second 1T/4bytes = 0.25T float
0.25T * 2flops = 500 GFlop
```
Case study: Matrix Multiplication with Constant memory

• \(C = A \times B \)

float sum = 0;
for (int i=0; i<w; i++)
 sum+=A[idy][i]*B[i][idx];
C[idy][idx] = sum;

Naïve matrix multiplication (one output per thread)

• All threads with the same idy access input A same location sequentially.
 – From A[idy][0] to A[idy][w-1]
• How about we put A into constant memory
Matrix Multiplication (Tiled)

- $C[0], C[1], C[2], C[3]$ can be computed concurrently
- Let’s put $A[i][j]$ into constant memory
Efficient constant memory accesses

- When we load one pixel from B
- We can compute one output pixel
- Or two, up to 16 so that we can use more computation to overlap memory access B
- But column access in constant memory is not efficient
Matrix Multiplication

- A is 128 x 16
 - We can put A into const memory (column major)
 - Load a float from B, we can do 16 mad to overlap the memory request of B
 - The width of B determine the overall thread number.

\[
\begin{align*}
\text{128 x 16 A} & \quad \times \quad \text{WidthOfB x 128 B} \\
\text{X} & \quad = \quad \text{WidthOfC x 16 C}
\end{align*}
\]
Kernel code when A is 128 x 16

```c
int idx = blockIdx.x*blockDim.x + threadIdx.x;
float sum[16];
for (int i=0; i<128; i++) {
    float b = B[i][idx];
    for (int j=0; j<16; j++) {
        sum[j] += b*CONSTA_A[i*16+j];
        // A is in constant memory
    }
}
for (int j=0; j<16; j++) {
    C[j][idx] = sum[j];
}
```

- Each thread computes 16 output pixels
- Thread block size: 256
- Up to 1.8 times Speedup on CUBLAS 3.1
- 75% of theoretical computation power (1.35Tflops) of GTX 480
Matrix Multiplication on GTX 480

*Constant memory transpose and transfer time included

- Width, Height of A and B are the same as the input size
- Up to 1.65X speedups over CUBLAS 3.1
- 67% of theoretical computation power (1.35Tflops) of GTX 480
Conclusion

• A systematic way to optimize GPGPU programs
 – Naïve kernel based on simplified hardware abstraction
 – Optimizations
 • Coalesced memory accesses
 • Data reuse through thread (block) merge
 • Eliminating partition conflicts
 • Leveraging different types of caches

• We implement a source to source compiler to perform the optimizations automatically.
 http://code.google.com/p/gpgpucompiler/