Outline

- Execution Configuration Optimizations
- Instruction Optimizations
- Multi-GPU
- Graphics Interoperability
Occupancy

Thread instructions are executed sequentially, so executing other warps is the only way to hide latencies and keep the hardware busy.

Occupancy = Number of warps running concurrently on a multiprocessor divided by maximum number of warps that can run concurrently.

Limited by resource usage:
- Registers
- Shared memory
Blocks per Grid Heuristics

- **# of blocks > # of multiprocessors**
 - So all multiprocessors have at least one block to execute

- **# of blocks / # of multiprocessors > 2**
 - Multiple blocks can run concurrently in a multiprocessor
 - Blocks that aren't waiting at a `__syncthreads()` keep the hardware busy
 - Subject to resource availability – registers, shared memory

- **# of blocks > 100 to scale to future devices**
 - Blocks executed in pipeline fashion
 - 1000 blocks per grid will scale across multiple generations
Register Dependency

Read-after-write register dependency
- Instruction’s result can be read ~24 cycles later

Scenarios:

CUDA:
- `x = y + 5;`
- `z = x + 3;`
- `s_data[0] += 3;`

PTX:
- `add.f32 $f3, $f1, $f2`
- `add.f32 $f5, $f3, $f4`
- `ld.shared.f32 $f3, [$r31+0]`
- `add.f32 $f3, $f3, $f4`

To completely hide the latency:
- Run at least **192** threads (6 warps) per multiprocessor
- At least **25%** occupancy (1.0/1.1), **18.75%** (1.2/1.3)
- Threads do not have to belong to the same thread block
Register Pressure

- Hide latency by using more threads per multiprocessor

Limiting Factors:
- Number of registers per kernel
 - 8K/16K per multiprocessor, partitioned among concurrent threads
- Amount of shared memory
 - 16KB per multiprocessor, partitioned among concurrent threadblocks

Compile with `-ptxas-options=-v` flag

Use `-maxrregcount=N` flag to NVCC
- \(N \) = desired maximum registers / kernel
- At some point “spilling” into local memory may occur
 - Reduces performance – local memory is slow
CUDA GPU Occupancy Calculator

Click here for detailed instructions on how to use this occupancy calculator.

For more information on NVIDIA CUDA, visit http://developer.nvidia.com/cuda

Your chosen resource usage is indicated by the red triangle on the graphs.

The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

1. Select a GPU from the list (click):
- **G80**

2. Enter your resource usage:
- **Threads Per Block:**
- **Threads Per Multiprocessor:**
- **Active Threads per Multiprocessor:**
- **Active Warps per Multiprocessor:**
- **Active Thread Blocks per Multiprocessor:**
- **Occupancy of each Multiprocessor:**
- **Maximum Simultaneous Blocks per GPU:**

3. GPU Occupancy Data is displayed here and in the graphs:
- **Active Threads per Multiprocessor:**
- **Active Warps per Multiprocessor:**
- **Occupancy of each Multiprocessor:**
- **Maximum Simultaneous Blocks per GPU:**

(Note: This assumes there are at least this many blocks)

Physical Limits for GPUs:
- **G80**

Multiprocessors per GPU:
- **16**

Threads / Warp:
- **32**

Warps / Multiprocessor:
- **24**

Threads / Multiprocessor:
- **783**

Thread Blocks / Multiprocessor:
- **9**

Total # of Active Registers / Multiprocessor:
- **1312**

Shared Memory / Multiprocessor (Bytes):
- **16384**

Allocation Per Thread Block:
- **Warp(s):**
- **3840**
- **Registers:**
- **512**

Shared Storage:
- **3840**

Shared Memory Usage:
- **Occupied Blocks:**

Varying Block Size

<table>
<thead>
<tr>
<th>Block Size</th>
<th>Multiprocessor</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Varying Register Count

<table>
<thead>
<tr>
<th>Register Count</th>
<th>Multiprocessor</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Varying Shared Memory Usage

<table>
<thead>
<tr>
<th>Shared Memory</th>
<th>Multiprocessor</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- This assumes there are at least this many blocks.
Optimizing threads per block

Choose threads per block as a multiple of warp size
- Avoid wasting computation on under-populated warps
- Facilitates coalescing

Want to run as many warps as possible per multiprocessor (hide latency)
Multiprocessor can run up to 8 blocks at a time

Heuristics
- Minimum: 64 threads per block
 - Only if multiple concurrent blocks
- 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
- This all depends on your computation, so experiment!
Occupancy != Performance

- Increasing occupancy does not necessarily increase performance

BUT ...

- Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels
 - (It all comes down to arithmetic intensity and available parallelism)
Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
- # of multiprocessors
- Memory bandwidth
- Shared memory size
- Register file size
- Max. threads per block

You can even make apps self-tuning (like FFTW and ATLAS)
- “Experiment” mode discovers and saves optimal configuration
Outline

- Execution Configuration Optimizations
- **Instruction Optimizations**
- Multi-GPU
- Graphics Interoperability
CUDA Instruction Performance

Instruction cycles (per warp) = sum of
- Operand read cycles
- Instruction execution cycles
- Result update cycles

Therefore instruction throughput depends on
- Nominal instruction throughput
- Memory latency
- Memory bandwidth

“Cycle” refers to the multiprocessor clock rate
- 1.3 GHz on the Tesla C1060, for example
Maximizing Instruction Throughput

- Maximize use of high-bandwidth memory
 - Maximize use of shared memory
 - Minimize accesses to global memory
 - Maximize coalescing of global memory accesses

- Optimize performance by overlapping memory accesses with HW computation
 - High arithmetic intensity programs
 - i.e. high ratio of math to memory transactions
 - Many concurrent threads
Arithmetic Instruction Throughput

- **int** and **float** add, shift, min, max and **float** mul, mad: 4 cycles per warp
 - int multiply (*) is by default 32-bit
 - requires multiple cycles / warp
 - Use **__mul24()** / **__umul24()** intrinsics for 4-cycle 24-bit int multiply

- **Integer divide and modulo are more expensive**
 - Compiler will convert literal power-of-2 divides to shifts
 - But we have seen it miss some cases
 - Be explicit in cases where compiler can’t tell that divisor is a power of 2!
 - Useful trick: `foo%n==foo&(n-1)` if `n` is a power of 2
There are two types of runtime math operations in single precision

- **__funcf()**: direct mapping to hardware ISA
 - Fast but lower accuracy (see prog. guide for details)
 - Examples: `__sinf(x), __expf(x), __powf(x,y)`

- **funcf()**: compile to multiple instructions
 - Slower but higher accuracy (5 ulp or less)
 - Examples: `sinf(x), expf(x), powf(x,y)`

The `-use_fast_math` compiler option forces every `funcf()` to compile to `__funcf()`
GPU results may not match CPU

Many variables: hardware, compiler, optimization settings

CPU operations aren’t strictly limited to 0.5 ulp
 Sequences of operations can be more accurate due to 80-bit extended precision ALUs

Floating-point arithmetic is not associative!
FP Math is Not Associative!

- In symbolic math, \((x+y)+z = x+(y+z)\)
 - This is not necessarily true for floating-point addition
 - Try \(x = 10^{30}, y = -10^{30}\) and \(z = 1\) in the above equation

- When you parallelize computations, you potentially change the order of operations

- Parallel results may not exactly match sequential results
 - This is not specific to GPU or CUDA – inherent part of parallel execution
Control Flow Instructions

Main performance concern with branching is divergence
- Threads within a single warp take different paths
- Different execution paths must be serialized

Avoid divergence when branch condition is a function of thread ID
- Example with divergence:
  ```c
  if (threadIdx.x > 2) { }
  ```
 - Branch granularity < warp size
- Example without divergence:
  ```c
  if (threadIdx.x / WARP_SIZE > 2) { }
  ```
 - Branch granularity is a whole multiple of warp size
Why Multi-GPU Programming?

Many systems contain multiple GPUs:
- Servers (Tesla/Quadro servers and desktopsides)
- Desktops (2- and 3-way SLI desktops, GX2 boards)
- Laptops (hybrid SLI)

Additional processing power
- Increasing processing throughput

Additional memory
- Some problems do not fit within a single GPU memory
Multi-GPU Memory

 GPUs do not share global memory
 One GPU cannot access another GPUs memory directly

 Inter-GPU communication
 Application code is responsible for moving data between GPUs
 Data travels across the PCIe bus
 Even when GPUs are connected to the same PCIe switch
CPU-GPU Context

- A CPU-GPU context must be established before calls are issued to the GPU
- CUDA resources are allocated per context
- A context is established by the first CUDA call that changes state:
 - `cudaMalloc`, `cudaMemcpy`, `cudaFree`, kernel launch, ...
- A context is destroyed by one of:
 - Explicit `cudaThreadExit()` call
 - Host thread terminating
Run-Time API Device Management:

- A host thread can maintain one context at a time
 - GPU is part of the context and cannot be changed once a context is established
 - Need as many host threads as GPUs
 - Note that multiple host threads can establish contexts with the same GPU
 - Driver handles time-sharing and resource partitioning

- GPUs have consecutive integer IDs, starting with 0

Device management calls:

- `cudaGetDeviceCount(int *num_devices)`
- `cudaSetDevice(int device_id)`
- `cudaGetDevice(int *current_device_id)`
- `cudaThreadExit()`

© NVIDIA Corporation 2009
Choosing a Device

- Properties for a given device can be queried
 - No context is necessary or is created
 - `cudaGetDeviceProperties(cudaDeviceProp *properties, int device_id)`
 - This is useful when a system contains different GPUs

- Explicit device set:
 - Select the device for the context by calling `cudaSetDevice()` with the chosen device ID
 - Must be called prior to context creation
 - Fails if a context has already been established
 - One can force context creation with `cudaFree(0)`

- Default behavior:
 - Device 0 is chosen when no explicit `cudaSetDevice` is called
 - Note this will cause multiple contexts with the same GPU
 - Except when driver is in the *exclusive mode* (details later)
Ensuring One Context Per GPU

Two ways to achieve:
- Application-control
- Driver-control

Application-control:
- Host threads negotiate which GPUs to use
 - For example, OpenMP threads set device based on OpenMPI thread ID
 - Pitfall: different applications are not aware of each other’s GPU usage
- Call `cudaSetDevice()` with the chosen device ID
Driver-control (Exclusive Mode)

To use exclusive mode:
- Administrator sets the GPU to exclusive mode using **SMI**
 - **SMI** (System Management Tool) is provided with Linux drivers
- Application: do not explicitly set the GPU in the application

Behavior:
- Driver will implicitly set a GPU with no contexts
- Implicit context creation will fail if all GPUs have contexts
 - The first state-changing CUDA call will fail and return an error

Device mode can be checked by querying its properties
Inter-GPU Communication

- Application is responsible for moving data between GPUs:
 - Copy data from GPU to host thread A
 - Copy data from host thread A to host thread B
 - Use any CPU library (MPI, ...)
 - Copy data from host thread B to its GPU
- Use asynchronous memcopies to overlap kernel execution with data copies
- Lightweight host threads (OpenMP, pthreads) can reduce host-side copies by sharing pinned memory
 - Allocate with `cudaHostAlloc(...)`
Example: Multi-GPU 3DFD

3DFD Discretization of the Seismic Wave Equation
- 8th order in space, 2nd order in time, regular grid

Fixed x and y dimensions, varying z

Data is partitioned among GPUs along z
- Computation increases with z, communication (per node) stays constant
- A GPU has to exchange 4 xy-planes (ghost nodes) with each of its neighbors

Cluster:
- 2 GPUs per node
- Infiniband SDR network
Linear scaling is achieved when computation time exceeds communication time
- Single GPU performance is \(~3.0\) Gpoints/s

OpenMP case requires no copies on the host side (shared pinned memory)
- Communication time includes only PCIe transactions

MPI version uses MPI_Sendrecv, which invokes copies on the host side
- Communication time includes PCIe transactions and host memcopies
3 or more cluster nodes

- Times are per cluster node
- At least one cluster node needs two MPI communications, one with each of the neighbors
Performance Example: 3DFD

Single GPU performance is \(~3,000\) MPoints/s

Note that 8x scaling is sustained at \(z > 1,300\)

Exactly where computation exceeds communication
Outline

- Execution Configuration Optimizations
- Instruction Optimizations
- Multi-GPU
- Graphics Interoperability
OpenGL Interoperability

- OpenGL buffer objects can be mapped into the CUDA address space and then used as global memory
 - Vertex buffer objects
 - Pixel buffer objects
- Direct3D vertex and pixel objects can also be mapped
- Data can be accessed like any other global data in the device code
- Image data can be displayed from pixel buffer objects using `glDrawPixels / glTexImage2D`
 - Requires copy in video memory, but still fast
OpenGL Interop Steps

Register a buffer object with CUDA
- cudaGLRegisterBufferObject(GLuint buffObj);
 OpenGL can use a registered buffer only as a source
 Unregister the buffer prior to rendering to it by OpenGL

Map the buffer object to CUDA memory
- cudaGLMapBufferObject(void **devPtr, GLuint buffObj);
 Returns an address in global memory
 Buffer must registered prior to mapping

Launch a CUDA kernel to process the buffer

Unmap the buffer object prior to use by OpenGL
- cudaGLUnmapBufferObject(GLuint buffObj);

Unregister the buffer object
- cudaGLUnregisterBufferObject(GLuint buffObj);
 Optional: needed if the buffer is a render target

Use the buffer object in OpenGL code
Interop Scenario: Dynamic CUDA-generated texture

Register the texture PBO with CUDA

For each frame:
- Map the buffer
- Generate the texture in a CUDA kernel
- Unmap the buffer
- Update the texture
- Render the textured object

```c
unsigned char *p_d = 0;
cudaGLMapBufferObject((void**)&p_d, pbo);
prepTexture<<<height, width>>>(p_d, time);
cudaGLUnmapBufferObject(pbo);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
glBindTexture(GL_TEXTURE_2D, texID);
glTexImage2D(GL_TEXTURE_2D, 0, 0, 0, 256, 256,
             GL_BGRA, GL_UNSIGNED_BYTE, 0);
```
Interop Scenario: Frame Post-processing by CUDA

For each frame:
- Render to PBO with OpenGL
- Register the PBO with CUDA
- Map the buffer
- Process the buffer with a CUDA kernel
- Unmap the buffer
- Unregister the PBO from CUDA

```c
unsigned char *p_d=0;
cudaGLRegisterBufferObject(pbo);
cudaGLMapBufferObject((void**)&p_d, pbo);
postProcess<<<blocks,threads>>>(p_d);
cudaGLUnmapBufferObject(pbo);
cudaGLUnregisterBufferObject(pbo);
...```