
Juha Sjöholm
Senior Devtech Engineer
Helsinki

NVIDIA RTX in
Remedy Northlight

Remedy Entertainment

- Game studio based in Finland
- Founded in 1995
- 185 employees

- Best known for
- Quantum Break
- Alan Wake
- Max Payne

- Upcoming
- Control
- CrossFire 2 (Story Mode)

- Northlight engine

RTX Work at Remedy

- RTX ray tracing experiments started in 2017
- Exploring new possibilities
- Northlight RTX demo shown at GDC 2018

- https://www.remedygames.com/experiments-with-directx-raytracing-in-remedys-northlight-engine/

- DXR - DirectX Raytracing API
- RTX support announced for Control at Gamescom 2018

- Details will follow
- Work continues with Turing

Agenda
- RTX integration
- Shadows

- Sun
- Contact

- Reflections
- G-buffer
- Transparent surfaces

- Indirect Diffuse Illumination

Hybrid Rendering

- Enhance an existing rasterization based rendering pipeline.
- Resolve primary visibility through rasterization.
- Evaluate one or more effects related to lighting through ray tracing.

- Reflections
- Indirect Diffuse Illumination
- Shadows
- Ambient Occlusion

Combining Ray Tracing and Rasterization

RTX Integration in Northlight

- Ray tracing acceleration structures
- Ray tracing pipeline states
- Ray tracing shader tables

Acceleration Structures

- Separate bottom level built for each geometry LOD.
- LOD selection for ray tracing matches LOD selection for G-buffer.

Acceleration Structures

- Separate bottom level built for each geometry LOD.
- LOD selection for ray tracing matches LOD selection for G-buffer.
- Utilize existing mesh instancing logic.
- Mesh piecWtg

Acceleration Structures

- On each frame, run a CS that outputs the skinned vertex data.
- Each vertex is processed once. Indices are not touched.

- Update bottom level structure.
- Rebuild on every Nth frame.
- Update always may work for non-destructibles.

- Skip update if skinning matrices have not been touched.

Skinned Meshes

Bottom Level Build Flags

1. PREFER_FAST_TRACE - Non-deformable geometries
2. PREFER_FAST_BUILD | ALLOW_UPDATE - Deformable objects

Bottom Level Build Flags

1. PREFER_FAST_TRACE - Non-deformable geometries
2. PREFER_FAST_BUILD | ALLOW_UPDATE - Deformable objects
3. PREFER_FAST_TRACE | ALLOW_UPDATE - Hero characters
4. PREFER_FAST_BUILD - Fully physics based deformables, unpredictable movement

Bottom Level Build Flags

1. PREFER_FAST_TRACE - Non-deformable geometries
2. PREFER_FAST_BUILD | ALLOW_UPDATE - Deformable objects
3. PREFER_FAST_TRACE | ALLOW_UPDATE - Hero characters
4. PREFER_FAST_BUILD - Fully physics based deformables, unpredictable movement

- If not alpha tested, FORCE_OPAQUE flag in top level instance
- MINIMIZE_MEMORY not used

Resource Barriers

Vertices
modified?

For each deformable object

Add to list of modified meshes

Yes
No

Continue using the same bottom
level structure

Select LOD

Resource Barriers

Write out triangle mesh

Vertices
modified?

Transition barrier for vertex data

Transition barrier for vertex data
UAV barrier for bottom level acceleration structure

For each deformable object

Add to list of modified meshes

Yes
No

Continue using the same bottom
level structure

Select LOD

For each modified object

For each modified object

For each modified object

For each modified object Update/rebuild bottom level structure

For each modified object UAV barrier for bottom level acceleration structure

Acceleration Structures

- Simply rebuild top level on each frame.
- Best for ray tracing performance.

- Share a bottom level structure when possible.

Top Level Structure

BLAS [N]

Geometries

BLAS [N]

Geometries

Structure [N]

Geometries

Top Level Acceleration Structure

Instance 0 Instance 1 Instance 2 Instance 3 [...]

Bottom Level Structure 0 (Northlight Mesh)

Geometry 0
(Northlight Primitive)

Geometry 1
(Northlight Primitive)

Structure 1

Geometry 0

Pipeline States

- Small extension to engine effect file format.
- Separate pipeline state for each DispatchRays().

- Optimal max values for recursion depth and payload size.
- A handful of permutations only.

- No application side state object caching.
- Shaders precompiled to DXIL.
- Could still utilize collections.

New Concepts

Pipeline States

- Ray tracing shaders compiled as libraries. (“lib_6_3” target)
- Large existing shader codebase.

- “static” keyword not used -> Every function is an export.

Shader Libraries

Pipeline States

- Ray tracing shaders compiled as libraries. (“lib_6_3” target)
- Large existing shader codebase.

- “static” keyword not used -> Every function is an export.

- /exports to limit exports.
- /auto-binding-space to enable automatic register assignment.

Shader Libraries

Shader Tables

- Use the global root table for almost everything.
- Compile all shaders in a pass as a single library.
- Ray generation and miss shaders use only the global root table.
- Hit groups use a couple special bindings through the local root table.

Global and Local Root Tables

Global root table
Shared for all shaders in a pass

Sampler table

CBV table
SRV table
UAV table

Local root table for hit groups
Extends the global table

Root SRVs

Root constants

Shader Tables

- Root SRVs to index and vertex buffers
- Some root constants

- Strides for the root SRVs
- Material id

- No references to descriptor heap

Local Bindings for Hit Shaders

Shader Tables

- Root SRVs to index and vertex buffers
- Some root constants

- Strides for the root SRVs
- Material id

- No references to descriptor heap

- Root SRV issues
- No check for out-of-bounds access
- No format conversions
- No check for base address alignment

Local Bindings for Hit Shaders

Shader Tables

- Simple, fast
- ByteAddressBuffers with dynamic attribute offsets -> no permutations

Root SRVs and Constants for Vertex Data

struct HitConstants {uint uVertexStride; uint uUVOffset; […]};

ConstantBuffer<HitConstants> g_bHitConstants : register(b0, space3);

ByteAddressBuffer g_bIndexBuffer : register(t0, space3);

ByteAddressBuffer g_bVertexBuffer : register(t1, space3);

Shader Tables

Remedy already had “bindless” access to materials.

- Material constants in a structured buffer
- Textures in an unbounded array

Bindless Access to Materials

struct HitConstants {[..], uint uMaterialID; };

ConstantBuffer<HitConstants> g_bHitConstants : register(b0, space3);

struct MaterialConstants {float fRoughnes;[…]};

StructuredBuffer<MaterialConstants> g_bMaterialConstants;

Texture2D g_tMaterialTextures[] : register(t0, space1);

Shader Tables

- All other bindings come from the global root table.

Layout

Ray generation ID Ray type 0
Miss ID

Ray type 1
Miss ID

Geometry 0
Ray type 0

Hit ID

Geometry 0
Ray type 1

Hit ID

Geometry 1
Ray type 2

Hit ID

Geometry 1
Ray type 2

Hit ID

[...]

Index SRV Index SRV Index SRV Index SRV [...]

Vertex SRV Vertex SRV Vertex SRV Vertex SRV [...]

Constants Constants Constants Constants [...]

Shadows
- Replacement for cascaded

shadow maps.
- Very convenient when screen

space shadow mask is
produced anyway.

Sun

- Alpha test in Any Hit Shader

- RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH

GeForce RTX 2080 TI, 1920x1080

0.9 ms (2 rpp)

Shadow Map Raytraced

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Shadows
- Use ray tracing to enhance shadow maps.
- Perfect details for the most influential

lights.

1. Select the lights for each pixel.
2. Raytrace screen space shadow masks.

a. You can use short (fast) rays.
3. Multiply with shadow map.

GeForce RTX 2080 TI, 1920x1080

1.4 ms (2 rpp, denoising)

Contact Shadows

Reflections

- Reconstruct position from
rasterized depth.

- Evaluate reflection direction
based on surface normal.

- Randomize based on material
properties (roughness).

- Direct replacement for screen
space reflections.

G-Buffer

Reflections

Screen SpaceScreen Space RaytracedRaytraced

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Screen

Reflections

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Screen

Reflections

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Screen

Reflections

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Reflections
Lighting Data

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Reflections

- Lots of lights
- Reflected location can be anywhere

- View space clustering
- Fast
- Good speedup for reflection

Light Culling

Reflections

- Most shadows with shadow maps
- Sample precomputed GI on miss
- Texture LOD 0.0f
- Unified shading model

GeForce RTX 2080 TI, 1920x1080

4.4 ms (1 rpp, denoising)

Reflections

- Primary rays to G-buffer depth
- Select transparents with cull mask

- For N closest layers
- Reflection ray from closest-hit
- Continue the primary ray

- After N layers
- Process layers in any-hit
- No more reflections

- “Weighted, Blended Order-Independent Transparency”
- https://developer.nvidia.com/content/transparency-or-translucency-rendering

Transparent objects

Indirect Diffuse Illumination

- Pre-computed with path tracer
- Voxel based
- Resolution 25 cm / 10 inch

Starting Point - Global Illumination as in Quantum Break

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Indirect Diffuse Illumination

- Modulated with either screen space AO or raytraced AO
- Raytraced AO is an improvement
- Still obvious issues

Raytraced AO Applied to Precomputed GI

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Indirect Diffuse Illumination

- Each cell contains lighting data that has been
pre-computed with a path tracer.

GI Data in Sparse Volume Texture

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Indirect Diffuse Illumination

- Each cell contains lighting data that has been
pre-computed with a path tracer.

- Static objects and selected lights are
included in the pre-computation.

Higher Resolution Near Static Geometry

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Indirect Diffuse Illumination

- Each cell contains lighting data that has been
pre-computed with a path tracer

- Static objects and selected lights are
included in the pre-computation

- Dynamic object can be in low resolution
areas.

Dynamic Objects Excluded from Pre-computing

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Indirect Diffuse Illumination

- The dynamic objects are missed.
- AO has been the method to tie the dynamic

geometry to the rest of the scene.
- Filtering of low resolution data causes

banding.

- Light leaking through thin geometry.

Issues with Direct Sampling of GI Data

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Indirect Diffuse Illumination

- Run a raytracing pass to sample the global
illumination.

- Short rays from GBuffer surface.
- If miss, sample GI.

- Miss locations are less likely to contain leaked
light.

- Cheapest option is to treat hits as black.
- Works like ambient occlusion.

Sample GI in Miss Shader

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

- Direct GI sampling on surface
- Modulated with raytraced AO

GI sampling in Miss Shader

Hit = Black

GI modulated with raytrace AO

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

- Banding with direct GI sampling

Sampling GI in Miss Shader

removes the banding.

Banding on the dome.

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Indirect Diffuse Illumination

- Evaluates single bounce near field dynamic GI.
- Blend with the pre-computed GI result sampled

in Miss Shader.

Diffuse Lighting on Hit Shader

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Indirect Diffuse Illumination

- Evaluates single bounce near field dynamic GI.
- Blend with the pre-computed GI result sampled

in Miss Shader.

- Lighting and material data to hit shader as in
reflections.

- View space light clustering.

GeForce RTX 2080 TI, 1920x1080

2.5 ms (1 rpp, denoising)

Diffuse Lighting on Hit Shader

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

- GI sampling in Miss Shader
- Treat hits black

Evaluate diffuse illumination on hits.

Do nothing on hits.

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

- Direct lighting

Direct and indirect diffuse
illumination.

Direct illumination only.

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

All lighting applied to materials.

Direct lighting, indirect diffuse
lighting and specular reflection.

Reference: Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.

Summary

- Some integration overhead
- It gets more productive after the initial work is done

- Some obvious straightforward effects
- Shadows
- Ambient occlusion
- Reflections

- Some more creative effects
- Contact shadows
- Indirect Diffuse

- Useful as reference too

Northlight RTX Is Work in Progress

References

[1] Tatu Aalto. Experiments with DirectX Raytracing in Remedy’s Northlight Engine. GDC 2018.
https://www.remedygames.com/experiments-with-directx-raytracing-in-remedys-northlight-engine/

The End
Questions?

Contact: jsjoholm@nvidia.com

