E8371

Simulating Lighting Conditions in Production Ergonomics with NVIDIA OptiX

Andreas Dietrich, ESI Group
October 11, 2018
AGENDA

Introduction
Helios Rendering Architecture
OptiX Backend
AI Denoising
Ray Tracing on HMDs
Example Applications
Demo
“A pioneer and world-leading provider in Virtual Prototyping.”

– www.esi-group.com
Introduction

Production Ergonomics

• Ergonomics important aspect of
 • Manufacturing systems
 • Maintenance procedures

• Visibility under real world lighting conditions
 • Affects efficiency of human operators

• Need to simulate light propagation
 • Monte-Carlo path tracing
 • GPU accelerated
HELIOS RENDERING ARCHITECTURE
Helios Rendering Architecture

Requirements

• Lightweight
 • Not a full-blown scene graph, let application handle this
 • Replicate as few data as possible

• High performance
 • Exploit specific/low-level GPU features
 • Must be able to get close to the metal

• Extensible
 • Leverage external rendering frameworks, such a NVIDIA RiX or OptiX

• Support for various rendering algorithms
 • Rasterization, ray tracing, hybrid modes
 • CAD rendering, photo-realistic rendering, scientific visualization, …
Overview

- Helios renderer supports a variety of rendering technologies

- Encapsulated in Backends, e.g.,
 - RiXGL: rasterization
 - OptiX: ray tracing

- Backends as dynamic libraries (DLLs)
 - Loaded and unloaded at runtime
 - Can be switched arbitrarily

- Helios controls render graph, e.g.,
 - Hybrid rendering
 - Frame composition
OPTIX BACKEND
Helios OptiX Backend

Overview

• Based on NVIDIA OptiX:
 • Programmable GPU ray tracing pipeline
 • Single-ray programming model using C++
 • AI accelerated rendering

• Implements a range of physically based rendering algorithms
 • Whitted ray tracing, Ambient Occlusion, Global Illumination
 • Generates precomputed lighting data (e.g., texture baking)
 • Separation of BSDF and integrator code (surface shading / light transport)
 • Supports Material Definition Language (MDL)
Overview

Helios OptiX Backend

Helios

MDL Manager
- Reads MDL files
- Generates material expression tree and parameter lists
- Generates BSDF programs (PTX assembly language)

OptiX Backend

OptiX Programs
- Ray generation and hit programs
- Integrators call BSDF programs

MDL SDK

OptiX
Helios Objects
Scene Hierarchy Flattening

Application graph

Backend graph

Copyright © ESI Group, 2018. All rights reserved.
Helios Objects

Shared Geometry and Appearance

Single object

- T1
- O1
- G1
- A1

Two object instances

- T2
- O2
- G2
- A2

- T3
- O3
OptiX Node Graph

Helios Objects as OptiX Node Graph

- Two-level acceleration hierarchy
- Increased performance when using RTX
OptiX Node Graph

OptiX Programs

- Transform
- Geometry Group
- Acceleration
- Geometry
- Geometry Instance
- Material
- BoundingBox Program
- Intersection Program
- ClosestHit Program
- AnyHit Program
Motivation for using MDL

Future-Proof Material Handling

- Realistic appearance
 - Physically based rendering
 - Support of measured materials
 - Material layering (e.g., clear coating over wood)

- Exchangeability and flexibility
 - Consistent look across renderer, platforms, applications
 - Vendor, renderer and platform independence
 - Share centralized material assets
 - Use of material libraries by 3rd-party providers
AI DENOISING
Global Illumination

Stochastic Monte-Carlo Noise

- Global illumination path tracer
 - Computes indirect light transport
 - Monte-Carlo sampling
 - Solves high-dimensional integrals
 - Exhibits stochastic noise
 - Takes long to generate smooth images
AI Denoising
OptiX Postprocessing

• Postprocessing pipeline since Optix 5.0

• OptiX command list consists of
 • Kernel launch stages
 • Postprocessing stages
 • Tone mapping
 • Denoiser filter

• Denoiser stage
 • Deep neural net (uses Tensor cores)
 • Trained to detect and remove noise

Command list
Deep Learning Denoiser
Filtering Noise in Postprocess

Plain path tracing (20 iterations) Path tracing + denoiser (20 iterations)
RAY TRACING ON HMDS
Ray Tracing on HMDs

Example

• Whitted style ray tracing possible on HMDs

• Helicopter cockpit
 • 180,000 triangles
 • 1 point light source

• Example setup
 • Oculus Rift
 • Quadro RTX 6000
 • OptiX 5.1 + RTX
 • 40 – 80 frames per second
EXAMPLE APPLICATIONS
Example Applications

Lighting Conditions in Micro-Factory

- Gazelle Tech micro-factory
 - Local car assembly
 - Relocation of production to customers
 - Suited for emerging countries

- Workspace Lighting
 - Illumination in tight spaces
 - Depends on local environment
 - Changes when factory is moved
Lighting Conditions in Micro-Factory
Global Illumination Simulation

IC.IDO 12.1 on Quadro RTX 6000
Lighting Conditions in Micro-Factory
Global Illumination Simulation

IC.IDO 12.1 on Quadro RTX 6000
DEMO
THANK YOU