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TRADITIONAL ROBOTIC PIPELINE
FOR AUTONOMOUS DRIVING
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Detection Planning
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aar Free Space Object
Detection Prediction
IMU
Encoder Localization Mapping

B Detect all objects and own position, recognize target path, optimize
detailed path plan, execute. Perfect engineering work!

B We are all done! (on a sunny day, with no humans on the road)

B Okay even by night or light rain! (but with no humans on the road)
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WHAT IS WRONG?
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B Technical problems: detection and model-building of real world
[1 Complexity of perfect solution is immense, but possible

B Social interaction problems: Currently crowded traffic is a game
between human opponents. It is a mutual agreement to give way, too.

B Pedestrian do not arbitrarily cross because they fear to be hit.
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SOLUTIONS

B Reduce the problem:
[ Strictly separate automated driving from human traffic (no
pedestrian, no bicyles, no motor-bikes, no other human driver)

0 Technically possible, does not solve our problem in the cities.

H Play the game !
[0 The goal is not to get hurt and hurt others only, if it is their fault.
0 And if it is their fault we have to hurt them (at least with a
certain chance), otherwise we are not taken seriously.
(Remember: It is a game!)
0 Alternatively, avoid the accident, but let the others pay a fine.
(total surveillance, automated cars regulate the traffic)

» Play a complex social game with humans ! Thatis A.l. |

J ! U nessler@bioinf.jku.at






WHAT IS A.l. ?

B the capability of a machine to imitate intelligent @ @
human behavior (Merriam Webster) . Q
A B

B .| know it, when | see it"

B Turing Test: -_—
7 1 human (C) has to tell apart an A.l. Qm?
chatbot (A) from a human chatter (B) 90

while talking to both simultaneously

C
B 1966: Eliza, Joseph Weizenbaum

B 2011: Cleverbot, Rollo Carpenter (unilateral Turing test)
1 Cleverbot got 59,3%, humans achieved 63 %
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CONCLUSION

B Level 5 Selfdriving is an Al Task.

B We need competitive (Deep) Learning approaches for selfdriving
[1 Generative Adverserial Nets
® Drive like humans, Turing Test
[1 Reinforcement Learning (RUDDER)
® Drive better than all others

B We need to set egoistic goals within the limit of the law but with
respect to how humans interpret the laws.

B There will be many solutions. Human will decide which style of
driving they buy.

B As long as humans participate in the traffic there will be accidents.
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Al IMPROVES ITSELF: GENERATIVE
ADVERSERIAL NETWORKS (GAN)
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m(%n max V(D,G) = Egmnpyaa(a) log D(x)] + E,p, (2)[log(1l — D(G(2))]
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Intelligence

Our Distorted View of Intelligence

Haha that's adorable
the funny robot can
do monkey tricks!
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Reality

Haha that's adorable
the funny robot can

do monkey tricks! | The fuck??
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INTRIGUING PROPERTIES OF
NEURAL NETWORKS

Szegedy, Christian, et al. "Intriguing properties
of neural networks.“ arXiv preprint arXiv:
1312.6199 (2013).
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ALPHA GO ZERO

3 hours

AlphaGo Zero plays like a human beginner,
forgoing long term strategy to focus on
greedily capturing as many stones as
possible.
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Elo Rating

ALPHA GO ZERO
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