AI Systems in IoT-Scale Deployments

Simon Collins
Senior Product Manager

GTC Europe
Thursday, 11 October 2018
Massive global growth driven by data
Enabled by convergence of key technologies

Artificial Intelligence to create $3.5 trillion - $5.8 trillion of value globally

Internet of Things to have 24 billion connected devices, 163 zetabytes of data by 2025

Edge Computing set to reach $3.24 billion by 2025

How do we manage data across this vast ecosystem?
AI Systems in IoT-Scale Deployments

Problem space

As IoT grows, the “Things” become more widely distributed

- Generates more value
- Generates more data
- Increases total system complexity
- Increases management costs
- Increases data connectivity costs

AI at the Edge allows “intelligent” machines to make sense of the data and transmit only valuable information

Increasingly capable hardware allow us to deploy more sophisticated tools at the Edge

- Lowers latency
- Keeps data on-premise = privacy
- Increases reliability

We need to be able to easily and securely manage the distribution of intelligence, while enabling continuous upgrades in capability.
Solution – Data-centric architecture

Focus on the data, not on the connectivity

Easy to Integrate - Data-centric architecture that hides topology details, enabling true plug-and-play
Scalable - Scaling across thousands or even millions of participants
Open – Mature, proven and open standard with future-proof APIs plus wire-protocol
Secure – End-to-end secure data connectivity with authentication, encryption & access control capabilities
Fault-tolerant – Peer-to-peer communication without message brokers or servers
Widely applicable - Available for embedded, mobile, web, enterprise and cloud applications
QoS-enabled – Full control over data distribution: timeliness, prioritization, reliability and resource usage
High-performing - Latencies as low as 30 µsec, throughput of millions of messages/sec

Diagram:

- Raw data → AI Process → Decision Process → Command Process → Command
- Publish → Subscribe
- Decouple
- Timeliness, prioritization, reliability and resource usage

Leading EDGE COMPUTING
Solution – Data-centric architecture
Rapid scalability and re-configuration

Allows a microservice architecture, each component focussed on its task → Move towards *Software Defined Machines*
IoT needs a lot of other connectivity
Decouple to achieve focus

AI developers focus on their core task, turning the input data into valuable information

Decouple from other aspects of the system; let others deal with:

- Cloud connectivity – *northbound*
- Peer-peer communications – *east-west*
- Operations & control – *southbound*
  - Modbus, PROFINET, CANbus, …
- Enterprise connectivity
Underlying technology

Data Distribution Service

Addresses the needs of large-scale mission and business-critical applications, scaling to ultra-large-scale deployments

Open standard for efficient, secure, interoperable, platform- and programming-language independent data sharing between networked devices

Applications can autonomously and asynchronously read and write data enjoying spatial and temporal decoupling

Built-in dynamic discovery isolates applications from network topology and connectivity details
Proven in Defense & Aerospace

Widely deployed by early adopter market

- Integrated Modular Vetronics
- Training & Simulation Systems
- Naval Combat Systems
- Air Traffic Control & Management
- Unmanned Air Vehicles
- Aerospace Applications
Broad Commercial Applications

- Autonomous Vehicles
- Industrial Automation
- Smart Cities
- Transport Management Systems
- Complex Medical Devices
- Smart Energy Grid
Incorporated into further standards
AI model training & deployment use case

Standard deployment

CLOUD / DATA CENTER

Training dataset

Test dataset

Model topic

Model_ID, Model

Geographical distribution

EDGE

Operational topic

Camera_ID, Class, Confidence

Live data

Live data

Live data

Live data
Distributed AI – homogeneous system

Many identical nodes collaborating
Traffic flow example
Central command center analysing traffic flow across a city

```
Model topic
- Model_ID: flow_v10.1
- Model: blob

Operational topic
- Camera_ID: CAM101
- Class: Car | Bus | Truck
- Confidence: %
- Direction: N | E | S | W
```
Traffic flow example

Mesh of intelligent co-operating nodes, “east-west” communication

Data produced by the app is the same; deploy new apps to consume locally
AI in the real world

The real world is messy!

Class: Pedestrian
Confidence: 98%

Class: Pedestrian
Confidence: 71%

Confidence

100%
95%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

I’m confident of a positive match in the data

I’m not really sure whether there is a match in the data

I’m confident of no match in the data

Note: high and low threshold points will be specific to each application, and a relevant risk assessment (probability of occurrence / severity of occurrence)
Confidence matters!
For each frame, are we confident to act?

- Live data

Confidence

- Publish class & confidence to enable business logic
- Publish class & confidence to enable business logic
- Publish class & confidence to enable business logic
- Publish class & confidence to enable business logic
- Retrieve problematic data
- Publish data, class & confidence to learning cycle
- Publish class & confidence to enable business logic
- Publish class & confidence to enable business logic
Iterative AI model training use case

Example: supervised learning of classification
Operations & training systems in parallel
Multi-layered network implementation

CLOUD / DATA CENTER
Subscribes to bad data topic(s)

CONTROL CENTER
Subscribes to operational topics
Distributed AI – load balancing
Processing cycle time longer than frame period

Data available
1 2 3 4 5 6 7 8 9 10

Lost data
Node A:
Process data
Publish result

Frame 1
Frame 4
Frame 7
Frame 10

Data is dropped & lost if processing node is not available
Distributed AI – load-balancing

Example: Introduce “worker pattern” to share load

Raw data is published to be consumed by other “worker” nodes
Distributed AI – load balancing

Data processing is interleaved across worker nodes

Node A:
- Process data
- Publish result

Node B:
- Process data
- Publish result

Node C:
- Process data
- Publish result
AI Systems in IoT-Scale Deployments

Summary

Enormous growth fuelled by convergence of technologies

A data-centric solution allows easy and robust scaling to IoT volumes

Developers focus on how to best exploit the data, rather than how to connect everything together

Leads to Software Defined Machines, which can be flexibly reconfigured as requirements change over time, supporting an iterative system evolution
AI at ADLINK
Innovative E2E Solutions powered by Deep-Learning Technology
Additional Use Cases
European Air Traffic Control

6GB of data in movement
~400 Mbps average Throughput
Pan-European Deployment

"Vortex is at the heart of the EU next-generation Air Traffic Control System"
– CoFlight

DDS is the standard recommended by Eurocontrol/Eurocare
World leader in automated agricultural systems have implemented DDS architecture for real-time control and monitoring of their milking robots.
Vortex guarantees mission critical reliability and real-time behaviour in large-scale naval combat management systems.
SMART GREEN HOUSES

Vortex is used to virtualize sensor data and to distribute actions and insights.
LAUNCH SYSTEM

80K+ data points with aggregate updates rate of ~400K msgs/sec