THIS IS ABACO SYSTEMS

E8190: Defense Systems and AI-based Vision/Graphics Computing: Challenges and Opportunities
Ross Newman (ross.newman@abaco.com)
Abaco Systems advances the capabilities of the warfighter by providing game changing mission ready embedded systems, components and technologies to defense contractors.

Our products reduce program risk, allow technology insertion with affordable readiness, and ultimately help platforms reach deployment sooner with lower cost.
WE RELY ON A HIGHLY EXPERIENCED TEAM OF 800+ PROFESSIONALS WITH GLOBAL REACH
WE DELIVER COTS AND CUSTOM SOLUTIONS WITH LONG LIFECYCLE SUPPORT AND FIVE RUGGEDIZATION LEVELS

Lowest TCO

Broatest range of COTS options

Best in class Technology Insertions capabilities

Rugged

Temperature

Shock

Vibration

Humidity & salt fog

Open standards

VMEbus

OpenVPX

PC104 / PC104+

PMC & XMC

PCI & PCI Express

CompactPCI

PXI compatible

Minimal SWaP

Advanced thermal solutions for fan-less cooling

Wedgelock restraints

Rugged military connectors & sealed enclosures
Deploying GPUs into military applications
Brief Overview of Military Vehicle Electronics (Vetronics)

Electronic architectures provide significant benefits.

- Ability to meet mission objectives with increased operational capability.
- Reduce crew numbers through greater autonomy.
- Increase survivability (reduced loss of life).

Systems need to work together sharing information.

- Network enabled architectures.
- Optical systems moving to fully digital.
- Telemetry data storage (HUMS).
- Big data analytics.
- Layered Security protocols.
- Secure data and RF communications.
- Situational awareness across the battlefield.
The argument for open standards / open architectures

Globally there are several initiatives that share a common set of goals. Reduced cost of ownership, interoperability, upgradability to allow for ‘bolt on’ new capabilities and allow for technology advancement and innovation.

- **VICTORY** Vehicular Integration for C4ISR/EW Interoperability 🇺🇸
- **Generic Vehicle Architecture** (DEF-STAN 23-13) 🇬🇧
- *NATO Generic Vehicle Architecture* (STANAG 4754) 🇪🇺
- **AS GVA** DEF(AUST) 11316 🇦🇺

This approach presents significant opportunity for COTS vendors to develop innovative product offerings that incorporate GPU/s performing various rolls within a vetronics system.

NGVA is an extension of GVA that meets a broader set of requirements including unmanned systems integration
Architectures need to scale to all platforms.

Reduced through Life costs from:
- Reduced vehicle platform sub system integration risk and cost.
- Reduced time to implement technology changes to vehicle platform architectures.
- Reduced through life costs from commonality of components and HMI.
- Increased competition for 3rd party sub components and systems.
- Reduced crew and maintainer training burden.
- Common vehicle service patterns reducing duplication

Improved Equipment capability:
- Improved Sub system data integration and interoperability.
- Built in scalability, expandability and growth potential for addition of future vehicle sub-systems

NATO, AU & MoD open standards approach to vehicle architecture
Generic Vehicle Architecture, GVA

The Land Open Systems Architecture (LOSA) is the UK MOD’s approach for open systems across the land environment. GVA is the set of standards that apply to vehicles.

Generic Vehicle Architecture (GVA DEF-STAN 23-09)
- Fully Digital architecture
- Distributed Data Service (DDS)
- SNMP
- HUMS (allows for legacy bus/s MilCAN & CAN)
- Precision Time Protocol

VIVOE (great for GPUs!!!)
- Vetronics Infrastructure for Video Over Ethernet (DEF-STAN 00-82)
- Real Time Protocol (RTP)
- Session Announcement Protocol (SAP)
- Raw Streaming (uncompressed)
- JPEG 2000 streaming
- H.264 streaming

Vehicle programs: AJAX, Foxhound, F-ATV, Challenger 2 LEP, MRV-P, Warrior CSP, FPBA, LPMR, MIV
The nVidia Tegra series of processors are ideally suited for SWaP optimized applications within a vehicle. Roles for embedded GPUs within the vetronics architecture include:

Mission Computers
- Commander Display – Mission objectives, moving map, data aggregation, situational awareness.
- Gunners Display – Firing options, threat detection, image fusion, object classification and localization, segmentation.
- Drivers Display – Real time low latency multicast video.

Storage
- Video Server – Record, Playback, Metadata, Aynalytics
- Data Server – Mission data, maps etc..
- HUMS (Health Usage and Monitoring Systems)
- Network Attached Storage – Cryptographic

Gateway
- Protocol Conversion – Edge of network, legacy interfaces
- Compression – Audio and Video streams for RF transmission

AI & Deep Learning
- Increase autonomy in situational awareness
- Threat detection and identification
- Autonomous resupply delivery and demand forecasting
GPUs in today’s military vehicles

<table>
<thead>
<tr>
<th>Country/Program</th>
<th>Model</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJAX Program (UK)</td>
<td>Challenger 2 (UK)</td>
<td>500+ new</td>
</tr>
<tr>
<td></td>
<td>Boxer CRV (Aus)</td>
<td>250 upgrade</td>
</tr>
<tr>
<td></td>
<td>LAND 400 (Phase 3, AUS)</td>
<td>211 new</td>
</tr>
<tr>
<td></td>
<td>Warrior (UK)</td>
<td>450 new</td>
</tr>
<tr>
<td>Germany Lynx KF41 (CHZ/AUS)</td>
<td>380 upgrade</td>
<td></td>
</tr>
<tr>
<td>VBCI (Qatar)</td>
<td>490 new</td>
<td></td>
</tr>
<tr>
<td>Boxer MIV (UK)</td>
<td>508 new</td>
<td></td>
</tr>
</tbody>
</table>

Images of military vehicles are included.
Digital Video Standards

abaco

SYSTEMS
Popular Digital Video Interfaces

Comparison of Popular Digital Camera Interfaces

<table>
<thead>
<tr>
<th></th>
<th>FireWire 1394.a</th>
<th>Camera Link®</th>
<th>USB 2.0</th>
<th>USB 3.0</th>
<th>GigE / RTP</th>
<th>HD-SDI</th>
<th>GSML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>800 Mb/s</td>
<td>3.6 Gb/s</td>
<td>480 Mb/s</td>
<td>5Gb/s</td>
<td>1000 Mb/s</td>
<td>3Gb/s</td>
<td>1.5Gb/s</td>
</tr>
<tr>
<td>Cable</td>
<td>100m (with GOF cable)</td>
<td>10m</td>
<td>5m</td>
<td>3m (recommended)</td>
<td>100m</td>
<td>300m</td>
<td>15m</td>
</tr>
<tr>
<td>Channels</td>
<td>up to 63</td>
<td>1</td>
<td>up to 127</td>
<td>up to 127</td>
<td>Unlimited</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Connector</td>
<td>9pin-9pin</td>
<td>26pin</td>
<td>USB</td>
<td>USB</td>
<td>RJ45/Cat5e or 6</td>
<td>BNC (Coax)</td>
<td>Coax or STP</td>
</tr>
</tbody>
</table>
RTP example video processing and storage

Acquisition
- Legacy video standards
- Protocol conversion
- Colour space conversion
- Video scaling
- Frame rate conversion
- Segmentation
- Object classification / localization
- 10Gig video streaming

Dissemination
- Openware switch management software
- 10 Gig fully managed layer 2/3
- Multicast, IGMP
- Quality of service
- VLAN
- Built In Test (BIT)
- Out of band management
- VICTORY switch compliant

Presentation
- Embedded (ARM) CPU
- Low power
- System on chip nVidia GPU
- Vulkan / OpenGL
- CUDA / OpenCL
- VisionWorks (OpenVX) / OpenCV
- Compression H.264 / H.265
- Video streaming

*Future SWaP recording solution

DDS = Distributed Data Service (Real Time Publish-Subscribe RTPS)
GigE Vision example video processing and storage

<table>
<thead>
<tr>
<th>Acquisition</th>
<th>Dissemination</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legacy video standards</td>
<td>Openware switch management software</td>
<td>Embedded (ARM) CPU</td>
</tr>
<tr>
<td>Protocol conversion</td>
<td>10 Gig fully managed layer 2/3</td>
<td>Low power</td>
</tr>
<tr>
<td>Colour space conversion</td>
<td>Multicast, IGMP</td>
<td>System on chip nVidia GPU</td>
</tr>
<tr>
<td>Video scaling</td>
<td>Quality of service</td>
<td>Vulkan / OpenGL</td>
</tr>
<tr>
<td>Framerate conversion</td>
<td>VLAN</td>
<td>CUDA / OpenCL</td>
</tr>
<tr>
<td>Segmentation</td>
<td>Built In Test (BIT)</td>
<td>VisionWorks (OpenVX) / OpenCV</td>
</tr>
<tr>
<td>Object classification / localization</td>
<td>Out of band management</td>
<td>Compression H.264 / H.265</td>
</tr>
<tr>
<td>10Gig video streaming</td>
<td>VICTORY switch compliant</td>
<td>Video streaming</td>
</tr>
</tbody>
</table>

*Future SWaP recording solution
What is Bayer8 and YUV?

Bayer (8 bits per pixel example)

Interpolation is used to reconstruct the image missing colour information.

- **Incoming light**
- **Filter layer**
- **Sensor array**
- **Resulting pattern**

Commonly used in GigE Vision

YUV422 (16 bits per pixel)

Y'UV files can be encoded in 12, 16 or 24 bits per pixel.

The Y'UV model defines a color space in terms of one luma (Y') and two chrominance (UV) components.

Luma values occur twice as frequently as chrominance U and V components i.e.

4 bytes repeat for 2 pixels:

```
Y U Y V
Y U Y V
Y U Y V
```

Commonly used in TV and analogue video.
RFC4175 - RTP payload format for uncompressed video.
Also mandated in GVA (DEF STAN 00-82)

OpenGL programmers will be used to RGB (Red, Green, Blue) buffers 24 bits per pixel where primary colours are represented separately but this is much less efficient when streaming.
Military applications demand high quality uncompressed real time **video** and **audio streaming**. Video compression adds additional latency and compression artefacts limiting its used in military applications.

<table>
<thead>
<tr>
<th>Defaults</th>
<th>Height</th>
<th>Width</th>
<th>Colour</th>
<th>FPS</th>
<th>Bandwidth (Mb)</th>
<th>Channels</th>
<th>Total (Mb)</th>
<th>Megapixles / sec</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>640x480</td>
<td>640</td>
<td>480</td>
<td>Bayer8</td>
<td>30</td>
<td>9.00</td>
<td>27</td>
<td>243.00</td>
<td>248.83</td>
<td></td>
</tr>
<tr>
<td>1280x720</td>
<td>1280</td>
<td>720</td>
<td>Bayer8</td>
<td>30</td>
<td>27.00</td>
<td>9</td>
<td>243.00</td>
<td>248.83</td>
<td>HD 720p</td>
</tr>
<tr>
<td>1920x1080</td>
<td>1920</td>
<td>1080</td>
<td>Bayer8</td>
<td>30</td>
<td>60.75</td>
<td>4</td>
<td>243.00</td>
<td>248.83</td>
<td>HD 1080p</td>
</tr>
<tr>
<td>3840x2160</td>
<td>3840</td>
<td>2160</td>
<td>Bayer8</td>
<td>30</td>
<td>243.00</td>
<td>1</td>
<td>243.00</td>
<td>248.83</td>
<td>4K</td>
</tr>
<tr>
<td>640x480</td>
<td>640</td>
<td>480</td>
<td>YUV</td>
<td>30</td>
<td>18.00</td>
<td>27</td>
<td>486.00</td>
<td>248.83</td>
<td></td>
</tr>
<tr>
<td>1280x720</td>
<td>1280</td>
<td>720</td>
<td>YUV</td>
<td>30</td>
<td>54.00</td>
<td>9</td>
<td>486.00</td>
<td>248.83</td>
<td>HD 720p</td>
</tr>
<tr>
<td>1920x1080</td>
<td>1920</td>
<td>1080</td>
<td>YUV</td>
<td>30</td>
<td>121.50</td>
<td>4</td>
<td>486.00</td>
<td>248.83</td>
<td>HD 1080p</td>
</tr>
<tr>
<td>3840x2160</td>
<td>3840</td>
<td>2160</td>
<td>YUV</td>
<td>30</td>
<td>486.00</td>
<td>1</td>
<td>486.00</td>
<td>248.83</td>
<td>4K</td>
</tr>
</tbody>
</table>

NOTE: H.264 and H.265 compression is most useful where bandwidth is limited such as RF links and off vehicle secure transmission.
Video aggregation using 10Gig Ethernet fibre

NOTE: GVA specification mandates 1GigE 1000-BaseT copper and 10GigE Fibre backbones to carry data around the vehicle.
For GigE Vision video acquisition then take a look at Aravis API and Gstreamer plugin.

Abaco systems Jetson Tegra TX2 deep learning demo with TensorRT uses PointGrey cameras for video ingress and Aravis for acquisition with colour space conversion being done using Abacos CUDA functions for real time video.

Note: bayer plugin can be found in gstreamer bad plugins.

```bash
sudo apt-get install gstreamer1.0-plugins-bad
```

RTP streaming is described in RFC4175 - RTP Payload Format for Uncompressed Video.

RTP raw streaming is supported in Gstreamer and can be demonstrated using the YUV colour space using the pipeline below:

```bash
gst-launch-1.0 udpsrc address=239.192.1.44 port=5004 caps=application/x-rtp, media=video, clock-rate=90000, encoding-name=RAW, sampling=YCbCr-4:2:2, depth=8, width=640, height=480, payload=96 ! rtpvrawdepay ! queue ! xvimagesink
```

NOTE: Use appsink to get video into your application.

```bash
xvimagesink renders the stream on the display in a window.
```

Aravis is found on https://github.com/AravisProject/aravis

More information on Gstreamer can be found on https://gstreamer.freedesktop.org
Computer vision and deep learning
Resupply scenarios

Resupply at reach

Emergency battle replenishment

Images provided under Open Government Licence v3.0

* MIRA Viking, Centaur Unmanned Ground Vehicle, TITAN, The Black Knight Transformer
This Defense and Security competition seeks to develop and demonstrate the use of autonomous systems to deliver mission-critical supplies, focusing on the challenging ‘last mile’ resupply in the land environment.

- **Challenge 1:** unmanned air and ground load carrying platforms
- **Challenge 2:** technologies and systems to allow load carrying platforms to operate autonomously
- **Challenge 3:** technologies to autonomously predict, plan, track and optimise resupply demands from military users

Why do we need the AI enabled solutions?

- Increased situational awareness
- Greater automation decreasing crew count
- Better, faster decision making

*ImageFlex 2.0 sensor fusion
**SkyBox running on the Jetson TX2
***WRNCH Demo shows at DVD2018
What is deep learning?

Deep learning networks typically have two primary phases of development: **training** and **inference**

Training

During the training phase, the network learns from a large dataset of labeled examples. The weights of the neural network become optimized to recognize the patterns contained within the training dataset. Deep neural networks have many layers of neurons connected together. Deeper networks take increasingly longer to train and evaluate, but are ultimately able to encode more intelligence within them.

```
github.com/abaco-systems fork of nVidias two days to a demo
```
Identifying future applications for GPUs

Mission Computer
- Increased automation, target classification, object detection, friend or foe?
- Situational Awareness 360 Degree vision systems with greater fidelity (AXIS ImageFlex and SkyBox).
- Leverage Open API such as Vulcan, VisionWorks (OpenVX) and OpenCV for greater software portability and reuse.

Storage
- Move to High Definition (HD) video streaming.
- Need for increased compression H.265 (requires modification to the current GVA standards).
- Data Mining and Deep Learning.

Gateway
- Interfacing with existing systems and the wide battlefield network.
- New codecs offering greater bandwidth efficiency for RF communication
- Intrusion detection, Secure Communication.

Other
- Digital Signal Processing with CUDA
- Communication Intelligence (COMINT)
- Signal Intelligence (SIGINT)
- Electronique Intelligence (ELINT)
- Software Defined Radio (SDR)
- Sensor Processing
- Unmanned vehicles
Abaco Systems nVidia GPU enabled products
Hardware - Fully ruggedized board level GPUs

High Performance OpenVPX NVIDIA GPU architecture. Choose **OpenVPX** form factor for easy integration and futureproofing GPU upgrade path via technology insertion.

Jetson AXG Xavier ARM + GPU = Low Power Embedded applications. Choose **embedded** for low Size Weight and Power.

<table>
<thead>
<tr>
<th>3U VPX Desktop (GPU Only)</th>
<th>6U VPX Desktop (CPU + GPU)</th>
<th>Packaged Products High TRL</th>
</tr>
</thead>
</table>

![OpenVPX](image1.png) ![OpenVPX](image2.png) ![Packaged Products](image3.png)
Accelerated development with AXIS ImageFlex 2.0
Software - **NEW** AXIS ImageFlex 2.0 Visualization API

ImageFlex
Visualization framework API

- Image creation and management
- CPU to GPU data movement
- 2D “overlay” drawing Image processing API
- Image manipulation
- Lens distortion correction.
- Complex image morphing
- Image fusion
- Image stabilization Interoperability API
- CUDA / OpenCL interoperability API Custom extendibility
- Easy creation of custom OpenGL “shader”
- 2D and 3D Matrix computation functions. Abaco quick start application examples
- "Basics" example, showing all key functionality
- "SkyBox" example for spherical situation awareness
- Image fusion example
- Image stabilization example
- OpenCV and OpenVX interoperability examples

Advanced Integrated Software Development Tool Suite
Perhaps the industry’s most advanced, most intuitive embedded software development environment, AXIS enables rapid software development.
Image Flex Image Annotator speeds up training
Image Flex Image Annotator speeds up training

NEW ImageFlex Datasheet: https://www.abaco.com/download/axis-imageflex-20-datasheet
Software – AXIS reducing time to deployment

Define and Visualize Dataflow

Choose High Performance Math Libraries

Choose High Performance Communication Libraries

Application Visualization and Control

Analyze App and System Performance

Application Visualization and Control

Analyze App and System Performance

Advanced Integrated Software Development Tool Suite

Perhaps the industry's most advanced, most intuitive embedded software development environment, AXIS enables rapid software development.
Software - AXIS Enabled Middleware for High Performance

Dataflow
AXIS View: ApplicationView
Define dataflow
Visualize dataflow

High Performance Communication Libraries
AXIS Flow
Proprietary
Thread Based
AXIS MPI
Open Standard
Process Based

Performance Analysis
AXIS EventView
Demystify App Perf

Application GUI
AXIS DataView
Control C Variables
Visualize App Data

High Performance DSP Libraries
AXIS RSPL
Proprietary
AXIS VSIPL
Open Standard

Advanced Integrated Software Development Tool Suite
Perhaps the industry's most advanced, most intuitive embedded software development environment, AXIS enables rapid software development.
Whitepapers available from abaco.com

From Machine Intelligence to Deep Learning
Our vision is to be your embedded partner of choice as you design and deploy mission-critical systems for the harshest, most challenging environments.

INNOVATE
Fresh, new thinking to create better ways of solving problems

DELIVER
We live up to our commitments. Time after time. Every time.

SUCCEED
Our business only succeeds when our customers succeed. Period.
Serial Digital Interface

Serial digital interface (SDI) is a family of digital video interfaces first standardized by SMPTE (The Society of Motion Picture and Television Engineers) in 1989.

A related standard, known as high-definition serial digital interface (HD-SDI), is standardized in SMPTE 292M; this provides a nominal data rate of 1.485 Gbit/s

<table>
<thead>
<tr>
<th>Standard</th>
<th>Name</th>
<th>Bitrates</th>
<th>Example Video Formats</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPTE 259M</td>
<td>SD-SDI</td>
<td>270 Mbit/s, 360 Mbit/s, 143 Mbit/s, and 177 Mbit/s</td>
<td>480i, 576i</td>
</tr>
<tr>
<td>SMPTE 344M</td>
<td>ED-SDI</td>
<td>540 Mbit/s</td>
<td>480p, 576p</td>
</tr>
<tr>
<td>SMPTE 292M</td>
<td>HD-SDI</td>
<td>1.485 Gbit/s, and 1.485/1.001 Gbit/s</td>
<td>720p, 1080i</td>
</tr>
<tr>
<td>SMPTE 372M</td>
<td>Quad Link HD-SDI</td>
<td>2.970 Gbit/s, and 2.970/1.001 Gbit/s</td>
<td>1080p</td>
</tr>
<tr>
<td>SMPTE 424M</td>
<td>3G-SDI</td>
<td>2.970 Gbit/s, and 2.970/1.001 Gbit/s</td>
<td>1080p</td>
</tr>
</tbody>
</table>

Link back to [Popular Digital Video Interfaces](#)