How Microcontrollers help GPUs in Autonomous Drive

GTC 2017
Munich, 2017-10-12

Hans Adlkofer, VP Automotive System department
<table>
<thead>
<tr>
<th></th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Safety concepts</td>
</tr>
<tr>
<td>2</td>
<td>Sensor Fusion architecture and functionalities partitioning</td>
</tr>
<tr>
<td>3</td>
<td>Key Safety Challenges and proposals</td>
</tr>
<tr>
<td>4</td>
<td>Summary</td>
</tr>
</tbody>
</table>
High Dependability

All requirements must be addressed as a whole

Continuity of correct service

- Reliability
- Maintainability
- Security
- Safety
- Availability

- Designed to undergo modifications and repairs
- Recognize hazards to achieve an acceptable level of risk against thief and hackers
- Recognize hazards to achieve an acceptable level of risk against faults
- Readiness for correct service
- Dependability
Some Main Safety Concepts: Safe Computing platform

Hardware (Design Flow ISO 26262)

- Lockstep Core, Built-In Self Test, Safety Management Unit, ...

Safety Measures

Protection against...

Failure cause

- Transient (Particle)
- Systematic (common causes: clock, supply, temperature, ...)

Safe Computing Platform!!

Software (Design Flow ISO 26262)

If SW not deterministic?

- SOTIF (Safety of the Intended Functionality)
Safety Partitioning between HW and SW

Strong Hardware Safety Support
(Self-test, Lock-step, ...)

Small & Fast SW Development/Test

VS.

Low Hardware Safety Support

Bigger & Longer Development of SW

Safety performance

ASIL-D ISO26262
Availability & Reliability

Temperature

Fast Boot/Reboot

Design Rules

MCU is First in operation...and “Last to survive”
<table>
<thead>
<tr>
<th></th>
<th>Agenda Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Safety concepts</td>
</tr>
<tr>
<td>2</td>
<td>Sensor Fusion architecture and functionalities partitioning</td>
</tr>
<tr>
<td>3</td>
<td>Key Safety Challenges and proposals</td>
</tr>
<tr>
<td>4</td>
<td>Summary</td>
</tr>
</tbody>
</table>
AD Compute Data Flow and Functionalities

Sense
- Lidar
- Radar
- Ultrasonic
- Camera
- GPS
- V2X
- Other Vehicle Sensors (ex: Position, Angle, Pressure)

Compute
- Perception
 - Sensor Fusion
 - Localization
 - Environment Model
- Trajectory selection
 - Vehicle Dynamics Model
 - Collision Avoidance
 - Actuation
- Path scenarios
 - Trajectory Planning
 - Behaviors
 - Motion Planning

Actuate
- Transmission
- Engine
- Braking
- Steering
Typical AD System Block Diagram for SAE L3+ (2020-2022)

Functionality
- Fusion and decision making
- AI-based perception
- Advanced sensor fusion
- Safety manager
- Security manager
- Vehicle gateway
- Black-box data recording

Compute Performance
- Number Cruncher(s)
 - 25+ TeraOps
- Safety Controller (eg: AURIX™)
 - >2K DMIPS (Real-time)
 - ASIL-D

Copyright © Infineon Technologies AG 2017. All rights reserved.
Typical AD System Block Diagram for SAE L3+ (2020-2022)

Functionality
- Fusion and **decision making**
 - AI-based perception
 - Advanced sensor fusion
- **Safety manager**
- **Security manager**
- **Vehicle gateway**
- Black-box data recording

Compute Performance
- Number Cruncher(s)
 - 25+ TeraOps
 - ASIL-B/C
- Safety Controller (eg: AURIX™)
 - >2K DMIPS (Real-time)
 - ASIL-D
AD Compute Latencies

<table>
<thead>
<tr>
<th>Layer</th>
<th>Main Function</th>
<th>Typical Latency</th>
<th>Compute Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Simple Sensor Processing + Vehicle Dynamics + "reflex" reaction</td>
<td>0.01s to 0.1s</td>
<td>Low (Real-time)</td>
</tr>
<tr>
<td>2</td>
<td>Object Sensor Fusion + Collision Avoidance</td>
<td>0.1s to 1.0s</td>
<td>Medium</td>
</tr>
<tr>
<td>3</td>
<td>Advanced Sensor Fusion + Localization + Planning</td>
<td>Over 1.0s</td>
<td>High</td>
</tr>
</tbody>
</table>

Sense
- Lidar
- Radar
- Ultrasonic
- Camera
- GPS
- V2X
- Other Vehicle Sensors (ex: Position, Angle, Pressure)

Compute
- Perception
 - Sensor Fusion
 - Localization
 - Environment Model
- Trajectory selection
 - Vehicle Dynamics Model
 - Collision Avoidance
 - Actuation
- Path scenarios
 - Trajectory Planning
 - Behaviors
 - Motion Planning

Actuate
- Transmission
- Engine
- Braking (ABS)
- Steering
Fail-Operational and low-latency Architectures

Performance, Power Budget, and Software Re-use Will Drive Architecture

Symmetric

- ADAS/AD
- Sensor Set #1,2
- Primary Compute (PC)
- Secondary Compute (SC)
- Supply source #1
- Supply source #2
- Bus 1
- Bus 2

Attributes:
- Higher cost
- Higher power consumption
- Full functionality in case of failure

Asymmetric

- ADAS/AD
- Sensor Set #1
- Sensor Set #2
- Switch #1
- Switch #2
- Primary Compute (PC)
- Secondary Compute (SC)
- Bus 1
- Bus 2
- Supply source #1
- Supply source #2

Attributes:
- Lower cost
- Lower power consumption
- Limited functionality in case of failure

PC: High Computation ("Number Cruncher"/GPU)

SC: Object-level Fusion / ASIL-D Controller
Cyber security: no Safety without Security!

Sense
- Lidar
- Radar
- Ultrasonic
- Camera
- GPS
- V2X
- Other Vehicle Sensors (ex: Position, Angle, Pressure)

Compute
- Perception
 - Sensor Fusion
 - Localization
 - Environment Model
- Trajectory selection
 - Vehicle Dynamics Model
 - Collision Avoidance
 - Actuation
- Path scenarios
 - Trajectory Planning
 - Behaviors
 - Motion Planning

Actuate
- Transmission
- Engine
- Braking (ABS)
- Steering

MCU key advantages
- Compact code (fast secure boot)
- Embedded Flash (key storage)

Replaced/Compromised Sensor
→ No integrity/quality of information

 Sensor Secure Boot
 Sensor + Message authentication

 Trojan, DoS, ...
→ Loss of control, increased latency, ...

 Component Fast Secure Boot
 Message Authentication
Agenda

1	Main Safety concepts
2	Sensor Fusion architecture and functionalities partitioning
3	Key Safety Challenges and proposals
4	Summary
Summary

Benefits of Microcontroller for AD

- Sustain harsh environment for **High Availability & Reliability**
- Compact code size in embedded Flash for **high security level and fast secure boot**
- HW Safe Compute Platform for **ASIL-D safety critical** decision in AD
- Embedded legacy peripherals as the **secure Gateway** to the backbone

Trend in Microcontroller for AD

- Higher ASIL-D performance to **add more safety functionalities**
- Higher Performance to **back-up functionalities** of the Number Crunchers/GPU in case of failure
- Higher-speed Connectivity to **manage more complex data and decrease latency** in the decision process