Highly Iterative Approach Towards Autonomous Driving

Prof. Dr.-Ing. Dipl.-Wirt.-Ing. Günther Schuh,
Director of the WZL and PEM at RWTH Aachen University
CEO of the e.GO Mobile AG

ID: 23380

Munich, October 11th 2017
Today’s Urban Mobility Concepts Face Several Challenges. The Dichotomy of On-Demand and Capacity-Optimized Is yet to Be Solved.

Mobility demand in urban areas is continuously rising.
Future mobility concepts need to be vastly available, highly efficient and low cost.

At the same time mobility needs to be low-emissive in pollutants and noise.

Future urban mobility needs to be on-demand, low-emission and highly efficient.
Public and Private Car Sharing Services Are Part of Future Mobility Solutions. However, They Still Remain to Prove General Profitability.

Divergence of different car sharing user groups

- **Family car sharing**
 - Family sharing 1-2 vehicles for multiple purposes

- **Apartment building**
 - Smaller social group sharing multiple cars

- **Company**
 - Company car pooling for business and private use cases

- **Smaller communities**
 - Limited number of users sharing multiple privately owned vehicles

- **Free floating service**
 - Large number of unconnected users sharing centrally owned vehicles

Due to different levels of trust and intimacy between changing users disparate car sharing solutions are necessary.

Source: Autolib
“I think we need to rethink the whole concept of public transport and create something that people are actually gonna like a lot more.”

Elon Musk

Innovative Mobility Solutions have to
- be on-demand
- provide low cost mobility (<15ct/pass.km)
- be available at any place and any time
- provide privacy/intimacy for the passengers
- allow valuable use of travel time

RoboTaxis and Autonomous PeopleMover will close the gap between traditional public transport and private car ownership.

1) Passenger perspective; Source: Berylls Strategy Advisors
An Agile Development Process Is the Key to an Iterative Approach Towards Autonomous Driving

During the develop process of the AV capabilities the level 0 vehicles serve as a data gathering fleet for deep learning concepts.

Source: e.GO Mobile AG; ZF Friedrichshafen AG
The Timeline of the e.GO Mover Development Comprises Several Versions for Concept and Component Validation

05/2017 AWK
- Concept demo

Q1 2018
- MK II
 - 30 vehicles
 - Development start of Version 3.0

End 2017
- MK I
 - 4 vehicles for testing purposes

04/2019
- MK III – fully homologated Level 0
 - 400 vehicles

2020
- 3,000 vehicles

2021
- Level 4 ready for market

2021
- 15,000 vehicles
 - Level 0 and Level 4

2022
- 30,000 vehicles
 - Level 0 and Level 4
The e.GO Mover Will Be Available for Small Fleet Tests Starting in 2019

Technical details

- 150 kW Powertrain by ZF
- Up to 70 kWh battery capacity
- Up to 10 hours of operating time
- Range Extender available by 2020

Pre-orders can already be placed at e.GO.

Base price: 60,000€

Technical details are preliminary information; changes may occur
Thank You for Your Attention!

Prof. Dr.-Ing. Dipl.-Wirt.-Ing. Günther Schuh

Professor, CEO
Campus Boulevard 30
D-52074 Aachen

📞 +49 241 80-27404
✉️ +49 241 80-22293
✉️ G.Schuh@wzl.rwth-aachen.de