23322: Open Fusion Platform for Automated Driving Cars Based on Nvidia DPX2
Agenda

- Motivation
- Overview of the *Open Fusion Platform* (OFP) Project
- Functional Architecture
- Interface Specification
- Joint Semantic Segmentation and Detection
- Intention Prediction, Risk Assessment and Decision Making for Vehicle Guidance
- Conclusion and Outlook
Motivation

- Fully automated driving prototypes available but no serial production
 - High development cost on sensors, hardware and algorithm
- Advanced driver assistance systems cover only predefined situations
- Integration issues due to heterogeneous sensors and interfaces
- Actual standardization initiatives for automated driving
 - OpenDRIVE: Format specification for road networks and infrastructure
 - OpenSCENARIO: Description of dynamic contents in driving simulation applications
 - Adaptive AUTOSAR: New AUTOSAR Platform for complex fusion systems
 - EB Robinos
 - Architecture specification in environmental fusion models
 - Software for development and embedded prototyping
 - SW Modules inside environmental model and situation analysis
Overview of OFP

Project Objective:

- Create a near series fusion platform with open interfaces, that allows a cost efficient implementation of highly and fully automated driving functions.

Sensor Configuration

Use Case:

“An e-car autonomously parks and positions itself directly on top off a parking space with a wireless charging plate. When car is charged, it drives itself to another parking space without a charging plate.”
Car Platforms used in OFP

- e.GO life (Electric)
- Passat GTE (Plug-in Hybrid)
- AUDI A6
Functional Architecture

Nvidia Drive PX2
Interface Specification

- **Hardware Interface**
 - Use available standards as CAN, LVDS, etc.

- **Basic Software**
 - Elektrobit AdaptiveCore: Adaptive AUTOSAR implementation from Elektrobit

- **Data- and timing-driven communication**

- **Definition of generic data types. E.g. object, ego pose and motion, image, etc.**

- **Software interface**
 - Description of inputs and outputs using module manifest
 - Specification of a module manifest template
 - Layer specific module manifest implements the manifest template

- **Interface specification available soon on the project homepage** http://www.ofp-projekt.de/ofp-project/de/Oeffentliche-Dokumente-305.html
Joint Semantic Segmentation and Object Detection

Overview

Sensors
- Camera
- RADAR
- SV Camera
- Ultra Sonic
- Vehicle Data
- GNSS
- Car2X
- Map Data

Perception
- Object Detection
- Object Classification
- Object Tracking
- Semantic segmentation
- Localization
- Ego Motion
- Intention Recognition
- Park Marking Detection
- Single-Sensor Data Processing

Fusion
- Semantic Scene Interpretation
- Map Fusion
- Free Space Detection
- Parking Space Detection
- Object Fusion
- Ego Fusion
- Consistency Checker
- Multi-Sensor Data Fusion & Interpretation
- Static Environment
- Map Data
- Dynamic Environment
- Vehicle State
- Driver State

Application
- Scene Prediction
- Navigation
- Maneuver Planning
- Trajectory Planning
- Function Arbitration
- Function specific Interpretation
- Analysis & Action Planning

Actuators
- EPS
- Brake
- Motor
- HMI
- Safety Systems

Environment Model

Fusion Framework
- Calibration
- Synchronization
- Libraries

Supervision
- State Machine
- Safety Manager
- Service Manager
Joint Semantic Segmentation and Object Detection Model

- Sharing of features between Faster R-CNN [1] and FCN [2]
- Extension of Faster R-CNN ROI Poling with FCN score map
- Advantages
 - Reduce feed forward computation time and memory consumption
 - Improve detection while keeping the segmentation unchanged
Joint Semantic Segmentation and Object Detection
Training and Evaluation on Daimler Cityscapes dataset

- Training and evaluation on Daimler Cityscapes dataset [3] using GTX 1080ti GPU
- Evaluation results: Intersection Of Union (IOU) for segmentation and mean Average Precision (mAP) for detection

<table>
<thead>
<tr>
<th>Model</th>
<th>Average IOU</th>
<th>Model</th>
<th>Average mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single FCN</td>
<td>0.579</td>
<td>Single Faster R-CNN</td>
<td>0.28</td>
</tr>
<tr>
<td>Joint-Model FCN</td>
<td>0.572</td>
<td>Joint-Model Faster R-CNN</td>
<td>0.296</td>
</tr>
</tbody>
</table>

- Complexity on GTX 1080ti, image size: 2048x1024
 - The joint-Model uses 33% less memory and is 1.3x slower than both single models running in parallel

<table>
<thead>
<tr>
<th>Model</th>
<th>#Params</th>
<th>Runtime</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single FCN</td>
<td>134.5M</td>
<td>320ms</td>
<td>5.63GB</td>
</tr>
<tr>
<td>Single Faster R-CNN</td>
<td>136.9M</td>
<td>250ms</td>
<td>4.47GB</td>
</tr>
<tr>
<td>Joint-Model</td>
<td>256.9M</td>
<td>430ms</td>
<td>6.71GB</td>
</tr>
</tbody>
</table>

- Video
Joint Semantic Segmentation and Object Detection
Fine Tuning on OFP Surround View Camera Data

- Fine tuning of the model trained on Daimler Cityscapes with OFP surround view camera data

- Complexity on GTX 1080ti, image size: 1024x440
 - The joint-Model uses 23% less memory and is 1.08x slower than both single models running in parallel

<table>
<thead>
<tr>
<th>Model</th>
<th>Runtime</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single FCN</td>
<td>180ms</td>
<td>2.22GB</td>
</tr>
<tr>
<td>Single Faster R-CNN</td>
<td>112ms</td>
<td>1.98GB</td>
</tr>
<tr>
<td>Joint-Model</td>
<td>195ms</td>
<td>3.22GB</td>
</tr>
</tbody>
</table>

- [Video](#)
An Abstract Functional Architecture for Automated Driving

For an automated vehicle guidance, the model and understanding about the current scene and its context are required.

Addressing Scenarios

Marco Scale
- Street Level
 - Road Level Env. Modelling
 - Road Network
 - Traffic Flow
 - Context Understanding
 - Ego Vehicle State
 - Scene/Scenary Modelling
 - Feature Extraction
 - Obj. Detection & Tracking
 - Free Space Detection
 - Lane Tracking

Meso Scale
- Lane Level
 - Task of Perception
 - Task of Driving
 - Navigation
 - Route Planning
 - Guidance
 - Situation Assessment
 - Decision Making
 - Stabilization
 - Trajectory Planning
 - Trajectory Tracking
 - Vehicle Dynamics Control

Micro Scale
- Feature Level
 - Task of Driving
 - Navigation
 - Route Planning
 - Guidance
 - Situation Assessment
 - Decision Making
 - Stabilization
 - Trajectory Planning
 - Trajectory Tracking
 - Vehicle Dynamics Control
OFP-Platform Provides us with Required Information about the Current Scene with different APIs
Intention Detection and Prediction of Road Participants by Using Probabilistic Approaches such as Bayesian Network

Approach:

Dynamic data: $v_{\text{lat}}, v_{\text{long}}, a_{\text{lat}}, a_{\text{long}}, \ldots$

Context data: $t_{\text{time-to-turn}}, t_{\text{time-to-vehicle}}, t_{\text{time-to-line}}, \ldots$

Conversion of Bayesian Network to Junction Tree for better calculation performance

Calculation of probability of each Maneuver based using Junction Tree Algorithm

Maneuver Catalog:

- Follow Vehicle
- Follow Road
- Turn
- Lane Change
- Target Brake
- Trash

Some Results:

Simulation Results

Simulation Results

Simulation Results
Risk Assessment of the Scene by Calculating the Predicted Trajectory and Collision Probabilities

Motion Model in Road Coord. Sys. | Two Step Collision Check | Calculating the Collision Probabilities | Sampling Using Monte Carlo

Follow Vehicle | Follow Road | Turn | Lane Change | Target Brake | Trash

Gap Keeping Model | Constant Acceleration Model | Constant Radius Model: Constant Velocity Model + Constant Acceleration Model | Half Sinus Model: Constant Velocity Model | Constant Acceleration Model (Considering the Distance to Obstacle) | Constant Acceleration Model + Constant Yaw Rate Model

\[s' = \text{Modell}(s, a) \]
Decision Making under Uncertainties by Using POMDP-Approach

POMDP
Partially Observable
Markov Decision Process:
\[S = \{s\} = \{x, y, v_x, v_y\} \] (States)
\[A = \{a\} = \{Acc, CV, Dec\} \] (Actions)
\[T = P(s'|s, a) \] (Transition)
\[R = R(b, a) \] (Rewards)
\[Z = \{z\} \] (Measurements)
\[O = P(z|s', a) \] (Observation)
\[\gamma \in]0; 1[\] (Discount factor)

Action Set A
- a_0: Acceleration
- a_1: Deceleration
- a_2: Constant Velocity

State S
- Ego Vehicle
 - Position \((x, y)\)
 - Velocity \((V_x, V_y)\)
- Road Participants
 - Position \((x, y)\)
 - Velocity \((V_x, V_y)\)

Evolution of the Scene in each frame
Reduce search space by eliminating branches with low rewards or too many action changes

Simulation Results

GTC Europe | Paulin Pekezou, Mohsen Sefati | Munich, October 2017
Conclusion and Outlook

- Open fusion platform based on Nvidia DPX2
- Functional architecture as a layer model
- Interface specification based on available standards and generic data types
- Joint learning of semantic segmentation and detection improves the detection
- Intention prediction and risk assessment
- Decision making using POMDP-approach

Next steps
- Integration into the DPX2 and test with live data
- Fine tuning of the models
Thank you for your Attention!

Paulin Pekezou Fouopi, DLR, paulin.pekezoufouopi@dlr.de
Mohsen Sefati, RWTH Aachen, M.Sefati@pem.rwth-aachen.de
Dr. Michael Schilling, Hella, Michael.Schilling@hella.com

www.ofp-projekt.de

Associated Partners:
Literature

