Real-time path tracing using a hybrid deferred approach
What stops us from real-time PT?

How can we create an intermediate, scalable solution?
What is Enscape?

- Real-time rendering plugin for architectural construction programs
 - Used by 78 of the Top 100 architecture companies worldwide
- The construction tool serves as the editor
- WYSIWYG for CAD model changes
- Huge projects, massive polycount, unprepared for rendering
- Offline quality without precalculation
Problems of real-time GI

- Light leaking
- Offscreen reflections
- Incompatible to complex BRDFs
- Indirect shadows
- High frequency indirect lighting
- Precomputation necessary
- Do not scale to ground truth
- Scene size assumptions
Deferred Path Tracing
Overview for diffuse and specular

GBuffer → Decide if new ray is necessary → Ray queue → Trace in SS

or

GBuffer → Last frame's reprojection

Trace in SS → BVH construction

Trace in BVH → Radiance buffer

Filter
Hybrid Approach

- Rasterization techniques where possible
 - Gbuffer
 - Shadow Maps
 - Post processing techniques
- Complements rasterization rendering
- Eliminates the need for primary rays
Ray traversal scheme

- Sample arbitrary BRDF with N number of rays per fragment
- Check for ray in screen space
 - If not, append to queue and traverse BVH later
- Temporally accumulate per pixel radiance and recycle until fragment can’t be reused
- Lazy request of new rays only when sampling density becomes too low
BVH Construction

- Async *BVH* construction and streaming with *LOD* based on scene location
- Calculate a score for each object based on its occlusion relevance vs traversal cost
- Include the best objects until maximum *BVH* size is reached
- Bake direct artificial light
 - Evaluate sun shading at traversal time to allow quick time of day changes
Sample Accumulation

- Calculate desired spp based on albedo, material parameters and direct light amount
 - Skip ray if spp is sufficient
- Use variable filter kernel depending on number of existing samples in sample accumulation buffer
- Keep accumulating for a while when camera stops before idling
 - Add more spp for powerful machines
Sample Accumulation

- Variance tile-based over the whole image to stop accumulating where we reached a sufficient noise level

\[\sigma = \sqrt{avg^2 - avgSqr} \]

- Bicubic tile filtering for stenciling and erosion mask for passes that are the source of a non-local filter kernel
Ground Truth Comparison

- Reliable in-app debug validation of indirect lighting results
- CPU-based classic path tracer
- Same shading models as real-time renderer
- Outputs an HDR target which is then injected into the normal post processing chain
 - Allows to toggle results immediately
Ground Truth Comparison
Ground Truth Comparison
Results

- Reaches stable real-time framerates
- Scalable for low spec machines & \(VR(spp, range) \) up to ground truth
- Async BVH Update every 2 seconds
- Scales well even to huge architectural projects
- Complete diffuse & specular indirect light paths except for caustics and indirect specular
- Almost no light leaking. Only cause are missing relevant objects in BVH, which is rare.

<table>
<thead>
<tr>
<th>Pass</th>
<th>ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBuffer</td>
<td>0.7</td>
</tr>
<tr>
<td>Direct Light</td>
<td>0.6</td>
</tr>
<tr>
<td>Transparency</td>
<td>1.8</td>
</tr>
<tr>
<td>Diffuse Rays</td>
<td>1.4</td>
</tr>
<tr>
<td>Diffuse Filtering</td>
<td>2.5</td>
</tr>
<tr>
<td>Specular Rays</td>
<td>1.6</td>
</tr>
<tr>
<td>Specular Filtering</td>
<td>0.3</td>
</tr>
<tr>
<td>Post Processing</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Average Timings @1080p on GTX1080
Thank you!

- Contact us for licensing or API
- We’re hiring for our office in Karlsruhe, Germany

www.enscape3d.com